
ISDA® | www.isda.org

SMART CONTRACTS

the ISDA Digital Asset Definitions were developed and how the
Common Domain Model (CDM) plays a central role in providing
a standardised digital blueprint for representing these operations
and events within distributed ledger technology (DLT) systems
and platforms. The article also explains how the smart contract was
designed, exploring how the contract was translated into code, how
it was structured and the functionality it provides.

The ISDA Digital Asset Definitions
The ISDA Digital Asset Definitions provide a standard contractual
framework for trading cash-settled options and forwards referencing
bitcoin and ether. The definitions utilise a controlled semantic
structure, framing likely-to-be-automated contractual provisions
as a set of parameterised conditions and outcomes. They do so
by expressing operative clauses using natural language drafting,
combined with consistent conditional logic terms such as ‘IF’,
‘AND’, and ‘THEN’.

In 2023, the International Swaps and Derivatives Association
(ISDA) published the ISDA Digital Asset Derivatives Definitions.
Considering the digital and decentralised characteristics of this asset
class, it was essential to develop a standardised contractual framework
that can be easily integrated into blockchain systems. This framework
could then form the foundation for smart contracts that support the
automation of contractual operations and events relating to these
transaction types. ISDA drafted the Digital Asset Definitions with
this objective in mind, using formal, controlled drafting structures
that allow the operative terms of transactions to be more easily
translated into machine-executable code.

Working in collaboration with Finn Casey Fierro, then a
master’s student at University College London, ISDA contributed
its various contractual, operational and data standards to support
the development of an Ethereum-based smart contract based on the
ISDA Digital Asset Definitions.

This article provides an overview of the initiative, explaining how

Use of smart contracts could bring significant efficiencies by automating the execution of
certain provisions within derivatives agreements. Ciarán McGonagle and Finn Casey Fierro

describe how a smart contract can be developed based on the ISDA Digital Assets Definitions1

Building Smart
Contracts

FIGURE 1: PAYING THE SETTLEMENT AMOUNT UNDER A CASH-SETTLED FORWARD

1 �This is an edited and updated version of an article that was first published in the January 2024 issue of Butterworths Journal of International Banking and Financial Law

ISDA® | www.isda.org

SMART CONTRACTS

For example, the clause set out in Figure 1 determines which
party will be required to pay the forward cash settlement amount
under a cash-settled forward.

This clause is expressed as a pair of conditions (prefixed by
‘IF’ and ‘OR ELSE IF’ statements) with associated consequences
(prefixed by ‘THEN’ statements), allowing it to be expressed as a
function within a smart contract.

The operation of these clauses (or functions) can also be affected
by the occurrence of external events. For instance, if a settlement price
cannot be determined, the operation might be rendered inoperable.

The ISDA Digital Asset Definitions provide mechanisms for
addressing such events (for example, through the application of a pre-
agreed fallback price source). These events will need to be implemented
or reflected within the smart derivatives contract to ensure their safe
and effective operation. The ISDA Digital Asset Definitions adopt the
framework proposed by Clack and McGonagle in Smart Derivatives
Contracts: the ISDA Master Agreement and the automation of payments
and deliveries 2, expressing these events as a series of steps:

•	 Observation: What data should be observed to determine whether
an event has occurred?

•	 Determination: How is the event determined?
•	 Action: What action is permitted/required following the

determination of an event?

Figure 2 illustrates this concept. The change in law disruption
event provides parties with the ability to terminate a transaction in
the event it has become illegal for a party to perform its obligations.

If change in law is specified as applicable, then a party can consult

the definition of a change in law disruption event to confirm the
precise parameters within which such an event can occur. Once the
specific circumstances of an event have been observed (for example, a
law has passed in a party’s jurisdiction banning the trading of digital
asset derivatives), a party may then determine that the change in law
disruption event has occurred. Again, this determination must be
made within the precise parameters of the contract.

Finally, some action may be taken – in this case, the
termination of the affected transaction(s). As illustrated, the
ISDA Digital Asset Definitions provide a hierarchal series of
conditions, all of which must be fulfilled for the relevant action to
be taken. While this event has only a single potential consequence
(ie, termination), other events may have a series of elective
consequences (ie, actions the parties may take) to address the
impact of an event – including, for example, calculation agent
determination or the designation of some pre-agreed fallback.
This logical sequence clearly differentiates between potentially
automatable steps like observation and steps like determination
and action, which might need human discretion.

The CDM
The CDM provides a standardised, digital blueprint detailing the
lifecycle events and processes associated with derivatives trades and
other financial products. This unified representation ensures that a
given trade or lifecycle event is understood and represented in the
same way across the industry and bridges the narrative complexity of
derivatives contracts and the logical precision of code.

Rossetta DSL (the domain-specific language used within CDM)
provides different components for representing data. These are

FIGURE 2: DETERMINING AN EARLY TERMINATION FOLLOWING A CHANGE IN LAW DISRUPTION EVENT

2 �Smart Derivatives Contracts: the ISDA Master Agreement and the automation of payments and deliveries, Christopher D. Clack, Ciaran McGonagle: https://arxiv.org/abs/1904.01461

https://arxiv.org/abs/1904.01461

ISDA® | www.isda.org

The ISDA Digital Asset Definitions provide a
standard contractual framework for trading cash-
settled options and forwards referencing bitcoin
and ether. The definitions utilise a controlled
semantic structure, framing likely-to-be-automated
contractual provisions as a set of parameterised
conditions and outcomes

SMART CONTRACTS

Then by defining the necessary inputs:
inputs:

multiplierValue number (1..1)

p number (1..1) // Settlement Price at the Valuation Time on the
Valuation Date

forwardPrice number (1..1)

currencyConversionFactor number (1..1)

Each input has a cardinality of (1..1), indicating that each input
must appear and can only appear once. Each input is also associated
with a basic type, indicating the format in which the data object must
appear (eg, a decimal number).

The output is defined in a similar way:
output:

cashSettlementAmount number (1..1)

The CDM also supports the definition of variables (known as
aliases) to express discrete functions that are used within the fully
defined function – in this case, the function for determining the
forward amount is expressed as p (ie, the settlement price at the
valuation time on the valuation date) less the forward price:

alias forwardAmount: p - forwardPrice

With each of the variables now defined, the function could be expressed:
set cashSettlementAmount:

multiplier * forwardAmount * currencyConversionFactor

referred to as ‘types.’ Types include ‘basic types’ (eg, Boolean
values or text strings) and ‘data types’ (specific data objects being
modelled, such as a price or a date).

Each data type may contain a series of attributes, specifying the
parameters within which information relating to that data type can
be captured. For example, if the relevant data type is designed to
capture the date of a transaction, multiple dates cannot be added
(due to cardinality restrictions) and neither can incongruous strings
of text (eg, elephant, yellow).

The formalised structure and strict parameterisation of defined
terms within the ISDA Digital Asset Definitions make this
translation process much more efficient. For example, each defined
term used within the forward cash settlement amount definition can
be separately defined, independent of the operation or interpretation
of any other term. This facilitates their expression as distinct objects
within the parameters of the relevant CDM data type.

These data types can then be expressed as variables or inputs to
functions designed to execute the operative provisions of the definitions.

For example, the formula for calculating the forward cash settlement
amount is:

Forward Cash Settlement Amount = Multiplier x (p – Forward
Price) x Currency Conversion Factor

Where ‘p’ means the Settlement Price at the Valuation Time on the
Valuation Date

This could be expressed in CDM by first defining the name of the
function:

func ForwardCashSettlementAmount:

[calculation]

ISDA® | www.isda.org

SMART CONTRACTS

complete programming languages like Python, JavaScript or (for the
purposes of Ethereum smart contracts) Solidity, where decisions are
made based on Boolean logic (see Figure 3).

Here, the code would be executed if either of the relevant
conditions were true. The similarity makes direct translation between
the definitions and the code immediate and clear for both lawyers and
programmers. The approach also helps standardise interpretation across
different developers and programming languages, as syntax in the
appropriate language can be used, referencing the CDM representation
of its component data types and attributes for consistency.

The smart contract project
The smart contract project focused on the creation of a framework
for developing smart contracts on the Ethereum blockchain based on
the standards described in this article. It included the development of
non-deliverable forwards and options in accordance with the terms of
the ISDA Digital Asset Definitions and the implementation of those
transactions based on the CDM representation of the relevant data
types and attributes.

To facilitate interaction with the smart contract, the project also
involved the creation of a graphical interface for the entire contract
process, designed for all contract parties, showing event notifications
and live price updates from an external oracle, without relying on a
traditional database.

The proposed smart contract templates are organised in a hub-
and-spoke structure, with a ‘confirmation’ smart contract at the core,
linked to various ‘logic module’ smart contracts, each representing
a part of the agreement with legal enforceability and connections to
broader natural language contracts.

This was achieved through development of a composable
architecture, separating the agreement’s data and logic into distinct

This function can then be combined with other relevant data
types, acting as an input in the function that determines which party
is required to make payment.

Translation from contract to code
The development of these standardised, digital representations of
contractual obligations, events and variable names establishes a robust
foundation for the development of smart contract-based platforms
within the derivatives market.

The ISDA Digital Asset Definitions have been drafted in a modular
structure, using controlled natural language constructs and term
definitions that are easily translatable into programming parameters.

This initiative has highlighted clear parallels between the legal
prose and programming languages. In contracts, defined terms are
frequently employed to refer to specific concepts throughout various
operative clauses in a consistent way. Similarly, in programming,
functions use parameterised inputs to dictate outcomes based on
specific conditions. These parameterised inputs in programming are
analogous to the defined terms in legal contracts. The functions in
programming can also be compared to operative clauses in contracts,
as both serve to establish potential outcomes contingent upon specific
conditions, guided by defined terms.

The provision set out in Figure 1 illustrates a method for reading and
processing conditions in a structured sequence. It starts by examining
each non-indented line for a specific condition. If a condition is met,
the process moves to the related indented text for further instructions.
If not, it moves to the next line to check whether a specific condition is
met. In this example, the ‘OR ELSE IF’ operation is intended to denote
that the two conditions are mutually exclusive – ie, there cannot be a
scenario where both parties are required to pay3. This approach closely
resembles the structure of conditional statements found in Turing-

FIGURE 3: SOLIDITY CODE FOR PAYING THE SETTLEMENT AMOUNT UNDER A CASH-SETTLED FORWARD

3 �There are scenarios where the forward cash settlement amount may be zero, in which case neither party is required to pay. However, given that no obligation arises in such a scenario, it is arguably
unnecessary to expressly allow for this in either the contract or the smart contract

ISDA® | www.isda.org

SMART CONTRACTS

alongside a hash (digital fingerprint) of the document. As
blockchain storage becomes more economical, it will be possible to
store the actual documents on the chain, enabling smart contracts to
link directly to the full documents, streamlining the reference process.

Finally, the smart confirmation contract contains a list of
addresses to smart contract code that have permission to alter the
agreement’s state. Seen as the central hub of the MISCA (see Figure
4), the smart confirmation contract is a repository for all agreement
variability, making it an ideal structure for data standards like the
CDM.

The smart contract code will be contained in single-function
smart contract templates. These templates are called logic modules.
These logic modules would interact with the smart confirmation
contract to read its data and, in certain scenarios, to update the
agreement’s state (as in Figure 4).

For example, a logic module might contain the function that
determines the forward cash settlement amount. In this scenario, upon
the valuation time on the valuation date, the logic module would read
certain data contained within the smart confirmation contract and any
specified oracles to establish the relevant inputs. It would then execute
the function to determine the forward cash settlement amount and
store both the value and new state on the smart confirmation contract.
Once determined, another logic module could be initiated to read the
forward cash settlement amount and automate payment of the relevant
amount to the correct party, utilising traditional payment methods or
blockchain transacted stablecoins or tokens.
To promote readability and standardisation, each logic module has
been structured as follows:

templates. This structure is referred to as a modular integrated
smart contract architecture (MISCA) (see Figure 4).

The MISCA holds all transactional information and the state of
the agreement within a central smart contract, referred to as a smart
confirmation contract. Like its namesake in the current natural
language ISDA documentation framework, a smart confirmation
contract contains the economic terms and other information necessary
for the trade, such as who the parties are, the applicable price source
and any elections that have been specified within the applicable ISDA
product definitions (in this case, the ISDA Digital Asset Definitions).

The smart confirmation contract also stores new types of
transaction information. For instance, it will store information relating
to the contract’s ‘state’ (ie, where in the automation process the parties
are). It separates the lifecycle into a list of Boolean ‘questions’ that can
resolve to true or false at different times. For instance, the ‘isSigned’
Boolean indicates whether the contract has been signed. If true, the
system proceeds to verify ‘isCashSettlementAmountFixed’. If that is
also true, it checks ‘isCashSettlementAmountPaid’, continuing this
sequence through the contract’s conditions. The MISCA therefore
simplifies an agreements lifecycle into a series of straightforward
questions for intuitive understanding.

This structure can also reference any overarching natural language
contracts or documents. Within blockchains where data storage is
expensive, this could mean simply storing text of pre-established
documents, like that of

string isda_product_definition = “The ISDA Digital Asset
Derivatives Definitions”

FIGURE 4: MODULAR INTEGRATED SMART CONTRACT ARCHITECTURE4

Raise
Hedging

Disruption.sol

Smart
Confirmation

Contract

Permissions

Alters State

References
References

(1)
Sign.sol

Raise
Illegality

Disruption.sol

(3)
Settle.sol

ISDA Master
Agreement

(2)
PayCash

Settlement.sol

Raise
PriceSource

Disruption.sol

ISDA Digital
Asset

Definitions

4 �In Figure 4, the cubes symbolise smart contracts, while the pages depict natural language documents. Smaller cubes indicate logic modules, with the central, larger cube representing the smart
confirmation contract. Arrows display interactions and numbering displays order of execution required

ISDA® | www.isda.org

SMART CONTRACTS

• Setting of the state
The modification of the agreement’s state in the smart confirmation
contract (eg, updating the state of a derivatives contract to ‘settled’
after successful execution.

This structure is exemplified in Figure 5, which displays a logic
module written for the project in the solidity programming language.
It is called ‘pay forward cash settlement amount’. For the legal
robustness present in the controlled natural language of the ISDA
Digital Asset Definitions, it directly represents the operative clause
of payment from the definitions within its logic body (Figure 5).

This logic module has been engineered using the Hardhat
development framework tailored for the Ethereum virtual machine.
The deployment entailed initialising an associated smart confirmation
contract designed for non-deliverable forwards to be used as an address
in the parameter ‘_confirmationContractAddress’ (Figure 5). The smart
confirmation contract references an ISDA Master Agreement, the ISDA
Digital Asset Definitions and various permissioned logic modules. After
defining the transactional terms, including identification of the buyer
and seller, the smart contracts were integrated into a decentralised web
application for interaction with parties.

• Data retrieval and initiation
Fetches the necessary data from the smart confirmation contract,
databases or oracles and constructs the relevant programming objects
(eg, fetching a price source address or initiating a price-source oracle
object that can be used to retrieve a price from an identified price
source).

• Restrictions
Validates the permissions of the calling entity to execute the module’s
functions (eg, an ‘if ’ check that restricts access to the buyer of the
contract only). This section controls access to the subsequent sections,
assessing the agreement’s status and allowing lifecycle events to be
processed in the appropriate, sequential order.

• Logic body
This is the smart contract code that implements the operative
clauses (eg, the execution of a digital asset/token transfer between
the buyer and seller). This section, if so designated and with careful
auditing, can also execute functions from external smart contracts,
enabling potential interoperability among other transaction and
contract types.

FIGURE 5: LOGIC MODULE WRITTEN FOR PAY FORWARD CASH SETTLEMENT AMOUNT5

5 �In Figure 5, a logic module for paying a forward cash settlement amount is displayed, with its function separated into the standardised structure through comments and spacing. Within the logic body,
a clause from the ISDA Digital Asset Definitions is represented

ISDA® | www.isda.org

SMART CONTRACTS

the central hub, communicating among many different logic modules
and referencing natural language agreements.

The formal logic within each logic module relies on the standardised,
formal expression of the logic contained within the underlying
contractual framework. The smart contract project demonstrates how
the formal, controlled drafting structure and format used within the
ISDA Digital Asset Definitions allows for straightforward translation
into machine-readable data and machine-executable functions. The
CDM further enforces standardisation through the expression of these
functions and data attributes within a composable, industry-standard
domain model that can be used to represent (and automate) the terms
of many different financial products and agreements.

Although the structural features described simplify translating
the contractual logic found in the ISDA Digital Asset Definitions,
constructing a standardised smart derivatives contract framework for
a blockchain is neither trivial nor straightforward. When developing
a smart contract, it’s important to consider not just the design of
the contract itself but also the characteristics and advantages of
the blockchain it will operate on. Factors such as the blockchain’s
architecture, the level of automation it supports (the Ethereum virtual
machine has certain limitations in this regard), the existing user and
developer community, how user friendly the programming and
interaction with the code are and the clarity of the code’s semantic
structure all play a crucial role.

The development of a smart contract is therefore a tailored process,
adapted to the specific capabilities and context of the blockchain
platform being used, moving away from a generic one-size-fits-all
approach. However, during development of the smart contract project,
it was determined that there are steps users can take to mitigate many of
the issues presented by these limitations, providing both the necessary
functionality and design efficiency to users.

The extent of automation that is achievable will ultimately
depend not only on whether automation is effective but whether it
is efficient. This determination will, in each case, continue to require
the input of both lawyers and technology developers.

Ciarán McGonagle is assistant general counsel, smart contracts &

digital assets, at ISDA. Finn Casey Fierro is a Web3 Solutions

Architect at Null Technologies Ltd.

The MISCA might therefore be seen as treating operative
clauses like that of software development libraries, enabled by the
principle of composability – the system design philosophy that
enables the construction of complex systems from simplified, well-
defined components. Each module is self-contained, maintaining its
individual autonomy and facilitating its replacement or reusability. For
instance, if both parties agree to change the ‘settle version 1’ module to
‘settle version 2’ halfway through a derivatives lifecycle, this will simply
require switching their addresses on the smart confirmation contract
and the amendment would be instantly implemented.

One of the key benefits of this structure is that logic modules
are not required to have their own state. This allows them to be
agreement agnostic, capable of being combined and used across many
different types of products and agreements. This allows an incremental
approach to adoption. For example, some parties may begin by
adopting cryptographic signatures for traditional transactions and
therefore will opt for only a ‘sign’ logic module.

Others may seek greater automation of the entire derivatives
lifecycle, stacking ‘sign’, ‘settle’ and ‘raise disruption’ logic modules and
including all of them in the smart confirmation contract. Each logic
module can also have its own versioning system, allowing for widely
accepted and verified logic modules to be used more widely across the
market and for lawyers to verify their legal effect more easily.

The MISCA addresses risks associated with smart contracts,
including the systemic risks that may emerge from faults in a single
smart contract spreading through a network of interconnected
contracts. It does so by ensuring that issues in any single smart contract
can be isolated and replaced without adversely affecting the entire
system. Furthermore, new or amended terms can be incorporated
within the structure without requiring modification to other parts
of the contract. Perhaps most importantly, it standardises how smart
derivatives contracts are written, prioritising readability and intuition.

Conclusion
This article explains how a smart contract can be developed within the
standardised contractual, operational and data frameworks developed
by ISDA. It proposes a methodology – the MISCA – for constructing
a smart derivatives contract template based on these standards.
Within the MISCA framework, a smart confirmation contract acts as

The smart contract project demonstrates how the
formal, controlled drafting structure and format

used within the ISDA Digital Asset Definitions
allows for straightforward translation into machine-
readable data and machine-executable functions

