
1

October 2017

ISDA Common Domain
Model Version 1.0
Design Definition Document

Copyright © 2017 by International Swaps and Derivatives Association, Inc.

ISDA Common Domain Model Version 1.0: Design Definition Document

2

CONTENTS

Preface...04

Objectives...05

Definitions..06

	 •	 Key Properties of a Distributed Ledger.. 06

	 •	 Lineage... 06

	 •	 Consistency... 06

	 •	 Standard Event Space... 07

Model Definition Approach...07

	 •	 Design for Distributed Execution.. 07

	 •	 Design for Minimum Change.. 08

	 •	 Parametric Processing – Design for Minimum Persistence............................... 08

	 •	 Optimize for Repeated Processes.. 08

The ISDA CDM..09

	 •	 Independent Events.. 09

	 •	 New.. 10

	 •	 Terminate for Cash... 10

	 •	 Amend.. 11

	 •	 Split (Allocation).. 12

	 •	 Partial Termination... 12

	 •	 Full Assignment... 13

	 •	 Partial Assignment... 13

	 •	 Cancel.. 14

	 •	 Clear... 14

	 •	 Intermediation (Prime Brokerage).. 15

	 •	 Aggregation... 15

	 •	 Tear-up/Portfolio Compression... 15

	 •	 Independent Events Summary... 16

ISDA Common Domain Model Version 1.0: Design Definition Document

3

CONTENTS CONTINUED

•	 Dependent Events... 17

	 •	 Observations.. 17

	 •	 Exercises... 18

	 •	 Dependent Events Summary.. 19

	 •	 Transfers and Exchanges... 19

	 •	 Transfer... 20

	 •	 Exchange.. 20

	 •	 Products.. 21

	 •	 Bond Processing as an Example (Definition, Transfer, Sale)........................ 21

	 •	 Definition.. 21

	 •	 Transfer... 22

	 •	 Exchange.. 22

	 •	 Implications of Bond Processing Example... 22

	 •	 Simple Derivative Contracts... 23

	 •	 Index Derivative Contracts... 24

	 •	 Sophisticated Derivatives.. 25

	 •	 Portfolio Processes.. 26

	 •	 Collateral Process... 26

	 •	 Finance Process... 27

	 •	 Evidencing Professional Judgement.. 28

The Complete Model..29

	 •	 Classes of Distributed Ledger... 29

	 •	 Basic Distributed Ledger... 29

	 •	 Extendable Distributed Ledger – Lineage.. 30

	 •	 Permissioned Distributed Ledger... 33

	 •	 Distribution to Computational Nodes.. 33

	 •	 Fractal Symmetry.. 34

	 •	 Fractal Symmetry – Picture Example.. 34

	 •	 Fractal Symmetry – Product Example... 37

ISDA Common Domain Model Version 1.0: Design Definition Document

4

PREFACE

Presented in this document is the definition of version 1.0 of the ISDA Common Domain Model
(ISDA CDM). The ISDA CDM aims to deliver a standardized model for the post-execution trade
lifecycle, focusing on the non-differentiating aspects of that trade lifecycle that are candidates for
mutualization by the industry. The purpose of this initial conceptual version of the model is to
begin a discussion with ISDA’s membership and the broader industry on the feasibility of an ISDA
CDM as the basis for such common process and data standards.

ISDA CDM version 1.0 explores the fundamental concepts, which could lead to a more complete
ISDA CDM. It is expected that ISDA CDM version 2.0 will build on the concepts incorporated
in version 1.0 in a more systematic and formal way to deliver a digital artefact, based on an existing
derivatives data standard, Financial products Markup Language (FpML®). Most importantly, it will
evolve based on feedback and engagement with readers of this document. With this in mind, ISDA
welcomes feedback and questions from readers of this document.

Please direct questions or comments to: MarketInfrastructureandTechnology@isda.org.

ISDA Common Domain Model Version 1.0: Design Definition Document

5

OBJECTIVES

This document defines a consistent event and product model for financial products (the ISDA
CDM).

This paper focuses on post-trade activities, as these are where most fragmentation and opportunities
exist.

While the model definition is generic, and could be adopted via any technology, the
implementation is targeted at distributed ledgers (DLs) to exploit their embedded lineage and
consistency properties1. For this reason, examples and illustrations mention DLs to explain concepts
or design ideas, but that is not to contradict the statement that the model could be adopted via any
technology.

1 �Sections Key Properties of a Distributed Ledger and The Complete Mode expand on the concepts of lineage and consistency in DLs

ISDA Common Domain Model Version 1.0: Design Definition Document

6

DEFINITIONS

Key Properties of a Distributed Ledger

DLs enforce two relationships: consistency and lineage.

Lineage2

Lineage is defined:

𝑂(𝑛)=𝑓𝑚(𝑂(<𝑛))

Where:

•	 𝑂(0) is a direct observation of the outside world. This can be a single number, a set of things or a
human action (eg, a button is pressed).

•	 𝑓𝑚() is a piece of code that acts on an observation (ie, a smart contract in DL terminology –
although embedded function would be a better generic description).

•	 𝑂(𝑛>0) is defined as a derived observation (ie, some code 𝑓 is run to turn 𝑂(0) observation into
a 𝑂(1), the derived observation).

•	 𝑓𝑚() can have more than one input.

•	 As 𝑓1…𝑚() and 𝑂(0…𝑛) are persisted on a DL, then the ledger enforces lineage. It is possible to
trace a derived observation back through the function code and the inputs to the function.

•	 This is a hierarchy definition.

Consistency

Consistency is defined:

𝑁1[𝑓,𝑂] ≡ 𝑁2[𝑓,𝑂] ≡ 𝑁3[𝑓,𝑂] ≡ ..≡ 𝑁𝑥[𝑓,𝑂]

Where:

•	 N is a separate node on a DL;

•	 f is a piece of code;

•	 O is an identical observation;

•	 As a node can be in a different organization (say Bank 1, Asset Manager 2, CCP, Regulator), this
means there is confidence that what one party sees on their node is identical to what the other
party sees on theirs.

2 �Data lineage is a formal concept (or language) in computer science. Similarly, DLs are formal machines in computer science

ISDA Common Domain Model Version 1.0: Design Definition Document

7

Lineage and consistency are properties of the DL itself (usually using some cryptographic
mechanism)3. Conceptually, DLs are Von Neumann/Turing machines, where there is no distinction
between data, the code that acts on the data and the results of the code.

Standard Event Space

All events (or observations of the DL definition) are defined in terms of a simple space:

𝑆≡[𝑃1,𝑃 2 ,𝑄,(𝐸)]

Where:

𝑃1and 𝑃2 are parties4;

𝑄 is a scalar quantity5;

(𝐸) is a ‘pointer’ to the definition of the economic description of the contract6.

Events are identified by a ‘hash’ mechanism that produces an identifier (eg, ‘19b9’) with lineage
controlled by the underlying DL/blockchain technology7.

MODEL DEFINITION APPROACH

Event definitions are defined in terms of ‘before’ and ‘after’ states. This avoids consciously or sub-
consciously importing implementation methods related to legacy technology.

Design for Distributed Execution

Processing of financial contracts lends itself to concurrent/parallel/distributed processing. This needs
to be recognized and incorporated into the design from the start and all the way through the process
stack. This is not the case in most current implementations (especially if they have batch processing
anywhere in that stack).

3 ��It is argued in the Appendix that no conventional set of communicating (messaging or batch) systems can achieve consistency or lineage, which is why
regulations like BCBS 239 are so problematic

4 ��Parties are not defined in terms of party and counterparty, as this depends on context (ie, if you are P1, then P2 is the counterparty, and vice versa),
and this introduces unnecessary complexity by eliminating symmetry. There is only one ‘party’ hierarchy. However, it is useful to keep this separate in
the initial definition

5 ��Usually ‘notional amount’ or ‘units of an instrument’
6 ��This is historically called something like ‘product’ or ‘instrument’, ‘static’ or ‘reference’ data. However, this is an unnecessary description in a DL

framework
7 ��In a DL environment, it is not necessary to think in terms of sequential identifiers and versions. These are techniques relating relational databases. DLs

have a generic means of recording lineage, fundamental to their core definition/technology, which is described above

ISDA Common Domain Model Version 1.0: Design Definition Document

8

Design for Minimum Change

A good design should require the minimum amount of change to achieve the design objective. This
is particularly true in a distributed environment, where consensus processes run between the nodes
of a DL.

Parametric Processing – Design for Minimum Persistence

Products are defined with as few parameters as possible and only expanded once at the end of the
process on silicon/memory, where no consensus process required.

The historic design where this has been used is cashflow and event schedules. For example, take a
coupon – a simple function with a few parameters (quantity, start, end, frequency, day count and
holidays) and create and persist a schedule. The persisted derived schedule itself is far larger than
the parametric coupon object – this will be a problem in a distributed environment. There is also
the problem of any change to the parameters requiring a recalculation of the schedule, and the
associated distribution and consensus process for this recalculation. In the over-the-counter (OTC)
market, most contracts don’t go to their scheduled maturity date (they are compressed/torn up/
terminated), so all the initial calculation/storage/consensus processing cost and removal/consensus
process is a waste of resources as the cashflows never settle8 9.

Optimize for Repeated Processes

Ensure that the design supports the most frequent process.

In this case:

•	 A confirmation process is conducted once at the beginning of a position’s life.

•	 The resulting position may be run through a risk process thousands of times in its life.

•	 The persistence design should therefore be optimized for the repeated action.

8 ��The computation and storage of cashflow schedules made sense in the mid-1990s. Processing was conducted on single processors running at 100
MHz with a few GB RAM, portfolios were ‘small’ and compression/tear-up services and complex stress/risk/capital calculations didn’t exist. Processes
were bound by limited processing power, and communication/storage overhead was acceptable. The code and data storage was also separate. Roll
forward to now: processing is plentiful – farms of 18 core 4GHz are common, and communication is faster

9 ��In a process where trades are identical on a DL, variation margin is paid, and settlement is also on a DL, then could calculate the cash flows a few days
before settlement

ISDA Common Domain Model Version 1.0: Design Definition Document

9

THE ISDA CDM

The ISDA CDM is built up in stages.

•	 First, the concept of independent events is introduced (ie, negotiated/advised events/actions).

•	 Second, the concept of dependent events is introduced. It is shown that the results of dependent
events are the same as independent events without the negotiation (the terms are defined
elsewhere, in contracts, etc).

•	 Third, the concept of exchange of value is introduced.

•	 Finally, the definition of products is introduced and expanded upon.

It is then shown that ‘event’, ‘exchange’ and ‘product’ are tightly related, if not identical. This is the
basis of the fractal symmetry – ie, identical structures/processes at different scales. This minimizes
the code that needs to be deployed by re-using the code for historically different processes.

Independent Events

The objective of this section is to define a primitive set of operations that exist on S= [P1, P2, Q,
(E)]. The key point is the before and after events are a collection in space S.

The first set of events are independent in that they have to be negotiated (ie, priced/quoted) or
advised.

Although an interest rate swap (IRS) is shown for illustrative purposes, these operations are
independent of the economics (E), and are therefore are applicable to all asset classes.

The events considered are:

•	 Single events (one-for-one state transition, between before and after);

ºº New;

ºº Terminate for cash;

ºº Amend;

ºº Cancel;

•	 Single events (one before but multiple after);

ºº Split (also known as allocation);

ºº Partial termination for cash (also known as a decrease; an increase is the logical opposite);

ºº Full assignment for cash (full novation);

ºº Partial assignment for cash (partial novation);

ISDA Common Domain Model Version 1.0: Design Definition Document

10

ºº Clear*;

ºº Intermediation* (prime brokerage);

•	 Multiple events (many to one);

ºº Aggregation*;

•	 Multiple events (many to many);

ºº Tear-up*.

* NB: In these events, the re-use of very similar primitive state transitions that have been used in previous
events becomes evident.

New

Terminate for Cash

At some point in the future, the parties negotiate to terminate the contract for cash.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

New

Before -o- -o- -o- -o- -o-

After 3fb9 P1 P2 Q IRS(5dc4)

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Full Term for
Cash

Before 3fb9 P1 P2 Q IRS(5dc4) IRS replaced by a
termination feeAfter 2ef3 P1 P2 c,ccc.cc Cash

Item Description Comments

1 Before Nothing exists ‘-o-’.

2 Event
Identifier

3fb9 is a hash function result that identifies
the event – for example, on a DL.

3 Economics IRS(5dc4) is a pointer to an item on the DL
that defines the economic terms, dates, etc
of the contract.

The definition and example of economics is
considered later in this document10.
Assume here the IRS has no value at
inception.

10 ��See Fractal Symmetry

ISDA Common Domain Model Version 1.0: Design Definition Document

11

Amend

The economic terms are changed in some way. However, there is no negotiated cashflow.

There are necessary constraints on this operation that need to be explored further – ie, the
intention11 is to amend the transaction to correct an error. Consequently, it should probably not be
possible to change an IRS to an FX option, for example.

Note: The distinction between ‘Amend’ and ‘Cancel/Correct’ does not exist in this definition of before/after
states. This is because the linkage (addressing) on a DL is the same for both12.

Item Description Comments

1 Before IRS(5dc4) exists.

2 Event
Identifier

2ef3 identifies the termination event
The DL infrastructure joins the before and
after events 3fb9 and 2ef3.

3 Economics IRS (5dc4) has been replaced by a cash
flow of quantity ‘c,ccc.cc’.
Once the cashflow has settled, there are no
remaining contractual obligations between
P1 and P2.

This is a negotiated termination – ie, both
parties have to agree on cash value.

11 ��The concept of tying intention to events is to be explored further in subsequent versions of the document. Comments on implementations of such
event processing would be welcome input to further development of this event model

12 ���In conventional relational database management system (RDBMS) technology, the addressing is in terms of elements in a table. This is the root of
much of the complexity when multiple RDBMSs have to be kept in sync or events have to be extracted and reported. For example:

•	 An amend changes a version number but not a trade ID

•	 Cancel/correct changes trade ID, and therefore there needs to be an explicitly programed mechanism to join the distinct trade IDs

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Amend

Before 3fb9 P1 P2 Q IRS(5dc4)

After 82ef P1 P2 Q' IRS(7dj5) Economic details of trade are changed

Item Description Comments

1 Before IRS(5dc4) exists.

2 Event
Identifier

3 Economics Q→Q’ and IRS(7dj5) represent the change to
the IRS contract.
DL infrastructure joins the before and after
events 3fb9 and 82ef.

There should be restrictions on what can
be changed. Also, it is believed, the event
should capture intention.

ISDA Common Domain Model Version 1.0: Design Definition Document

12

Split (Allocation)

A block trade is executed with a fund manager P2. P2 decides to allocate this trade across two funds
controlled by the fund manager.

Partial Termination

Note:
•	 On a strict delta definition, this is a decrease in one asset (the IRS) and an increase in another asset (cash).
•	 An increase is logically the same but reversed (quantity increases and cash reverses).

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Split (a.k.a.
Allocation)

Before 3fb9 P1 P2 Q' IRS(5dc4)

After 3k9s P1 P2/a q1 IRS(5dc4) Where P2/a and P2/b are ‘funds’ of P2

After 3k9s P1 P2/b q2 IRS(5dc4) Where q1+q2 = Q

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Part Term

Before 3fb9 P1 P2 Q IRS(5dc4)

After 3k9s P1 P2 q1 IRS(5dc4) Only change is quantity

After 3k9s P1 P2 c,ccc.cc Cash Partial termination fee

Item Description Comments

1 Before IRS(5dc4) exists.

2 Event
Identifier

3k9s identifies the event that splits the
notional.

3 Party P2 P2 is a manager of two funds, A and B. See later for definition of party hierarchy13.

4 Quantity The original trade quantity Q is split across
the two funds.

3 Economics IRS(5dc4) does not change.

Item Description Comments

1 Before IRS(5dc4) exists.

2 Event
Identifier

3k9s identifies the event that splits the
notional.

3 Economics There is no change in the terms IRS(5dc4).

4 Quantity The original quantity is reduced from Q to q1.

3 Cash A cash quantity c,ccc.cc is exchanged in
for the decrease in quantity of economics
(IRS(5dc4)).

The cash consideration for the reduction
Q→q1 is a negotiated event.

13 ��See Fractal Symmetry

ISDA Common Domain Model Version 1.0: Design Definition Document

13

Full Assignment

An existing contract is transferred to a new party and a fee is paid.

Partial Assignment

An existing contract is partially transferred for a negotiated fee.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Full Assign

Before 3fb9 P1 P2 Q IRS(5dc4) An IRS

After 3k9s P1 P3 Q IRS(5dc4) Change of party (P2 --> P3) on IRS

After 3k9s P2 P3 c,ccc.cc Cash Fee between P3 and P2

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Partial Assign

Before 3fb9 P1 P2 Q IRS(5dc4) An IRS

After 3k9s P1 P2 q1 IRS(xxxx) Where Q=q1+q2

After 3k9s P1 P3 q2 IRS(xxxx) Change of party (P2 --> P3)

After 3k9s P2 P3 c,ccc.cc Cash Fee between P3 and P2

Item Description Comments

1 Before IRS(5dc4) exists.

2 Event
Identifier

3k9s identifies an event that records the
assignment and associated fee.

3 Economics There is no change in the terms IRS(5dc4).

4 Party The contract is assigned from P2 to P3.

4 Quantity As this is a full assignment, there is no
change in quantity.

3 Cash A cash quantity c,ccc.cc is exchanged
between P2 and P3 to compensate for the
change in ownership of the contract.

The cash consideration for the reassignment
P2→P3 is a negotiated event.

ISDA Common Domain Model Version 1.0: Design Definition Document

14

Cancel

A cancel event should be unusual in normal transactions. However, it is required as part of portfolio
events (particularly tear-up transactions).

Cancel doesn’t mean that the trade has never existed. It means that it has ceased to exist now.

Clear

May be combined with allocation/split process.

Item Description Comments

1 Before IRS(5dc4) exists.

2 Event
Identifier

3k9s identifies an event that records the
assignment and associated fee.

3 Economics There is no change in the terms IRS(5dc4).

4 Party The contract is assigned from P2 to P3.

4 Quantity As this is a full assignment, there is no
change in quantity.

3 Cash A cash quantity c,ccc.cc is exchanged
between P2 and P3 to compensate for the
change in ownership of the contract.

The cash consideration for the reassignment
P2→P3 is a negotiated event.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Cancel

Before 3fb9 P1 P2 Q IRS(5dc4)

After -o- -o- -o- -o- -o- Trade is ‘cancelled’ - no corresponding
cashflow

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Clear

Before t73j P1 P2 Q [E] Where P3 is a CCP - Simultaneous
novations and removal of any contract
terms ([E] -->[E]) offensive to CCP
(eg, early termination)

After t73j P3 P2 Q [E]'

After t73j P3 P1 (Q) [E]'

ISDA Common Domain Model Version 1.0: Design Definition Document

15

Intermediation (Prime Brokerage)

Intermediation is basically the same as clearing.

Aggregation

Aggregation is logically the reverse of allocation process above.

Tear-up/Portfolio Compression

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Intermediate

Before t73j P1 P2 Q [E] Where P4 is a prime broker –
simultaneous novations and removal
of any contract terms ([E] -->[E])
offensive to PB (eg, early termination)

After t73j P4 P2 Q [E]'

After t73j P4 P1 (Q) [E]'

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Aggregation Logically the reverse of a split/
allocation above

Before 3fb9 P1 P2 q1 IRS(5dc4)

Before 3k9s P1 P2 q2 IRS(5dc4)

After 3k9s P1 P2 Q IRS(5dc4) Where Q=q1+q2

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Tear-up/
Portfolio
Compression

This is a set of changes to a portfolio
that is risk neutral OR change in risk is
compensaed for by a fee (CCY)
Bilateral shown – multilateral is logically
no different to ‘disappear’

Before gfd4 P1 P2 Q1-99 [E1-99]

Before gfd4 P1 P2 Q100 [E100]

Before gfd4 P1 P2 Q101 [E101]

Before gfd4 P1 P2 Q102 [E102]

After gfd4 P1 P2 Q100 [E100] No change

After gfd4 P1 P2 Q101-x [E101] Decrease

After gfd4 P1 P2 Q102+y [E102] Increase

After gfd4 P1 P2 Q103 [E103] New

After gfd4 P1 P2 c,ccc.cc CCY Fee

ISDA Common Domain Model Version 1.0: Design Definition Document

16

A tear-up is a portfolio process that aims to reduce the notional value of a portfolio without
materially changing the net risk.

The majority of trades are cancelled – there may be a few increases or decreases or the odd new
trade. If the risk replication is not exact, then there will be a fee associated with the tear-up/
compression process.

Independent Events Summary

•	 All events can be expressed in terms of the simple space S=[P1,P2,Q,(E)].

•	 The events are a collection of before and after states.

•	 The events are agnostic to the definition of economics in (E).

•	 There are very few events, as the simple space only contains four ‘addresses’ (strictly three in
examples illustrated so far, as P1 does not change in any of the examples above).

•	 There are three change types (P2→Pn, Q1→Q2 and -o- → inclusion of a negotiated cashflow).

ºº Therefore, the examples logically further reduce to a set of primitive operations.

•	 Events are symmetrical14.

ºº And therefore are simpler to code and to incorporate an ‘un-do’ of the event. This implies that
the underlying event solution should be very simple and generic.

14 ��This statement may be further explained in a subsequent version of this document

Model event name Note

1 o New

Single events
(one-for-one state transition, between

before and after)

2 o Terminate for cash

3 o Amend

4 o Cancel

5 o Split

Single events
(one before but multiple after)

6 o Partial termination for cash

7 o Full assignment for cash (full novation)

8 o Partial assignment for cash (partial novation)

9 o Clear

10 o Intermediation (prime brokerage)

11 o Aggregation Multiple events
(many to one)

12 o Tear-up Multiple events
(many to many)

ISDA Common Domain Model Version 1.0: Design Definition Document

17

Dependent Events

Derivatives are contingent claims and, as such, have reference to future events. As time passes and
these events become present, the crystallization of these events need to be recorded (observed) and
the appropriate actions need to be taken.

Generally, observations are currently split into two types:

•	 Observation of data defined in the contract (eg, a floating rate set, dividend declaration,
observation of temperature, etc)15.

•	 Observation of a human action required in a contract (eg, exercise notice served on a generic-
type option (see below)).

This distinction is not helpful. In a DL paradigm, there is no difference. Both result in an observation
that is logically a number (rate is a decimal number, exercise is a yes/no – 0/1 binary observation16).
Both have same constraints: ‘who is allowed to do it’ or ‘who is the authoritative source?’

The definition above is important, as the same primitive operations are used in all limit and review
type controls. For example, if a firm has a policy that ‘all transactions above 1,000,000 need a
review action’, then this is logically no different to the terms of a derivative contract. In other words,
there is some pre-defined policy that triggers a human to have to do something and evidence that
the review has taken place (and any subsequent actions as part of the review17). This is ‘evidencing
the application of professional judgement’ that is at the heart of BCBS 239.

Observations

Observations record ‘events’ defined in the contract. They may lead to subsequent actions (eg,
setting of a cashflow or change of contract type).

15 ��Note: We have deliberately not said ‘market data’ here, as this is an unhelpful historic definition and leads to the separation of physical systems that
we have in the current environment, which may not be the case in future implementations

16 ��Note: There is a subtlety here, in that there is the tristate of {‘yes’, ‘no’, ‘no response yet’}
17 ��For example, the classic control of ‘review all reconciliation breaks over x days old or greater than y’ is not usually evidenced and, more subtly, not

followed up to ensure that the break cleared in a way that was ‘valid’. Exploitation of these ‘controls’, and the lack of checking that the clearance
was valid, has been at the root of multiple unauthorized trading incidents and market abuse. That said, a key benefit of DLs should be to eliminate
reconciliations – the policy and follow-up controls will remain

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Numeric
Observation

Before xxxY P1 P2 Qty(xxxA) IRS(xxxx)

After xxxZ P1 P2 Qty(xxxA) IRS(xxxx).Numeric Eg, observation of a floating rate on an
IRS or an MV on a position

Action
Observation

Before xxxY P1 P2 Qty(xxxA) OPTION(xxxx)

After xxxZ P1 P2 Qty(xxxA) OPTION(xxxx).Action Eg, a person exercising an option

ISDA Common Domain Model Version 1.0: Design Definition Document

18

Numeric Observation

Examples include:

•	 The economics of a trade may require a floating rate (eg, federal funds rate) to be observed each
day;

•	 A trade is valued each day and the value stored.

An observation may lead to a subsequent action (eg, calculate next cashflow based on federal funds
rate observation).

Action Observation

Examples include:

•	 An option contract may require notice of exercise to be evidenced. This is a yes/no/not advised
observation.

•	 A policy (eg, review all trades with a day-one value above ‘value’).

Exercises

These are events that are defined by the economics of a contract. Such contracts are all types of
option – ie, where the final state depends on whether a defined choice (option) in the contract is
taken up (exercised).

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Exercise
(Cash)

Before 3fb9 P1 P2 Q Option(5dc4) Cashflow is defined by economics of
position and market data

After 3fb10 P1 P2 c,ccc.cc Cash Eg, credit derivative, option, swaption etc.
This is termination without negotiation

Exercise
(Physical,
Knock In)

Before 4fy4 P1 P2 Qty(xxx) Option(5dc4) Position (xxY) is defined by Position
(xxx) and market data

After 4fy5 P1 P2 Qty(xxY) Option(8wtx) Eg, FX option, credit derivative,
physical swaption etc.
This is an amendment without
negotiation

Exercise
(Physical,
Knock Out)

Before 4fy4 P1 P2 Qty(xxx) Option(5dc4) The contract disappears

After 4fy5 -o- -o- -o- -o-

ISDA Common Domain Model Version 1.0: Design Definition Document

19

Cash Exercise

In a cash exercise, the option contract turns into a cashflow that is calculated from terms in the
contract, and data observed after the contract is executed. The exercise results in a termination event
(as defined previously). There is no negotiation of terms, as the terms have already been defined in
advance. The exercise may require the holder of the optionality to ‘advise’ the other party. This is a
type of observation (also see above).

Physical Exercise

This is where the event changes the form of the contract in a pre-defined way.

For example:

•	 A swaption when exercised changes into an interest rate swap;

•	 A knock-in FX option changes into a vanilla FX option;

•	 An FX option changes into an FX trade.

In summary, if there is value in an option contract, then it will turn into cash or an asset – where
the ownership is transferred on a settlement system. For example, the contract may require the
delivery (transfer of ownership) of a security (eg, bond, equity) or a commodity (eg, metal, oil, etc).

Knock-out Exercise

A knock-out is where the contract ceases to exist as a result of an observation (other than time
passing18).

Dependent Events Summary

•	 Dependent events are defined by the contract terms.

•	 Dependent events cause the same underlying changes as independent events (eg, the exercise
of an option for cash results in a cashflow, as does an independent event (ie, negotiated
termination).

•	 They can therefore also be considered ‘contracted’ events.

Transfers and Exchanges

This section shows how products are built up out of primitive events in the same space [P1, P2, Q,
(E)] – ie, how the economics set (E) in this space is defined. In order to show how this is done, it is
useful to start with cash, then bonds/securities, and then derivatives19.

18 ��Note: The concept of maturity/expiry of a contract is where the contract goes past a time, defined as the end of the contract. It is debatable if this is an
event at all

19 ��In fact, mirroring the way such products developed over history

ISDA Common Domain Model Version 1.0: Design Definition Document

20

Transfer

This represents a transfer of cash between two parties20. Cash is defined by an identifier (in this
case, an ISO currency code21). Cash could move for any number of reasons (settlement of a trade, a
coupon, dividend, collateral, account transfer, etc).

The quantity needs to be defined in terms of units – eg, sterling is in pounds and pence. This
design removes the rounding problems encountered when settlements are calculated at a precision
that is meaningless (ie, it is impossible to have a £2,456.432525 settlement, whatever any system
calculating settlement values thinks. There are therefore finite precision issues that need to be
designed in at the beginning.

Exchange

An exchange (of ‘things’) is the fundamental concept of any individual contract. The example shows
the simplest form of financial contract – an agreement to exchange one currency for another. The
two cashflows are connected by a common event identifier.

When the FX trade comes to settle, two transfers (as defined above) are processed22.

Key points:

•	 In a DL, the same mechanism for event identification is used – ie, an exchange is a collection of
things that is identified on the underlying ledger.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Transfer

Cash 6re1 P1 P2 Q GBP Where GBP is the ISO currency code

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Exchange

FX Trade Exchange of cash. FX rate is
calculated from cashflows at 1.25

Cash 6re1 P1 P2 100 GBP

Cash 6re1 P1 P2 (125) USD

20 ��Implementation details of how this happens are not important (ie, if there are one or two records that are linked)
21 At this point, it is not necessary to distinguish between central bank and commercial money. The point is the transfer is recorded on a ledger
22 �Note: The settlement may be independent or through a cash versus cash process. Either can be implemented conventionally or on a DL, although

both are easier on a DL

ISDA Common Domain Model Version 1.0: Design Definition Document

21

•	 An FX trade is defined as the exchange of two cashflows. The rate is computed from the
cashflows. This is important, as it means that any number of any size FX trades in the same
currency pair can be simply added without loss of precision. If the rate is defined in terms of
a finite precision (five decimal places), then it is not possible to add large and small FX trades
together with confidence. Similarly, it is possible to have aggregations of similar size trades that
will produce a rate that cannot be expressed in a finite precision number.

•	 Some further notes:

ºº The exchange of two cashflows is embedded in the ISO/SWIFT messaging protocols.

ºº Implemented well, there is no need for standard settlement instructions and all the overhead
that goes into maintaining them.

ºº Likewise, implemented well, netting is implicit in the ledger (see original aggregation event above).

Products

Bond Processing as an Example (Definition, Transfer, Sale)

Definition

A bond is defined as a collection of terms (initial and final cashflows and coupon). The collection is
tracked on a DL as an event hx72.

Coupon is a function (smart contract) defined on the ledger.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Bond
Definition

P5 issues a bond with the
following economics

Cash hx72 P5 1,000,000,000 USD,s The principle cashflow at the
start of the bond

Cash hx72 P5 (1,000,000,000) USD,e The principle cashflow at the start
of the bond

Coupon hx72 P5 1,000,000,000 Coupon(rate,s,e,d,h) And the coupon in between

Transfer

Bond 54gt P1 P2 5,000,000 hx72 Where the bond is defined above
and identified as hx72 on the ledger

Exchange

Bond Trade

Bond esft P3 P4 10,000,000 hx72 Where the bond is defined above

Cash esft P3 P4 (9,727,000) USD Price is again computed at 97.27

ISDA Common Domain Model Version 1.0: Design Definition Document

22

There are additional contractual terms to a bond that can be stored with the base economics defined
here. These don’t impact the processing of bond transactions through its normal life23.

There are other notably possibilities – for example, registration of bond securities becomes an
approval process by the relevant authority.

Similarly:

•	 A bond template could be defined and then re-used on each issue of a bond24.

•	 Interest amounts are easy to strip from the principal.

Transfer

The bond hx72 can then be transferred between two parties P1, P2 (eg, in a collateral pledge). The
mechanism for doing this is identical to transferring cash (ie, the ledger tracks the thing identified by
an address, and that address could contain a cash contract, a bond contract or something else). There is
therefore no physical difference between the settlement infrastructure for a bond or for cash.

Exchange

The exchange (purchase/sale of a bond) transaction is exactly the same structure as for an FX trade.
When due for settlement, the individual elements turn into transfers and are processed on same
settlement functionality.

Implications of Bond Processing Example

•	 The definition of a bond can be conducted on the same infrastructure that processes them – ie,
no separate product data systems.

•	 ‘The processing of cash and bonds (or any other security or asset) is logically identical to
processing cash. On a DL, it can be physically identical.’

•	 Definition of a ‘thing’ and transactions in a ‘thing’ are tracked by the same addressing mechanism
on a DL.

•	 Some further notes:

ºº Consider how complicated this is on conventional infrastructure.

ºº Cross-currency processing (eg, an investor buys a US dollar bond for sterling) is a simple
composition of an FX and bond trade, as defined above.

23 ��A bond contract may contain a lot more, including terms relating to interest cover (really an option trigger), and collateral (ie legal liens). All these may
fall into the same structure

24 ��For example, every Treasury or gilt issuance is fundamentally under the same legal framework with amount, coupon and maturity added

ISDA Common Domain Model Version 1.0: Design Definition Document

23

Simple Derivative Contracts

Derivatives contracts are fundamentally agreements to exchanges of asset streams (usually cash) into
the future.

An IRS is the exchange of two coupon streams (ie, a fixed leg and floating leg). The event to identify
an IRS is no different to any other on a DL – it is the address 53g3 in this example.

A single-name credit default swap (CDS) connects together a bond (as defined previously) with a
coupon flow and a fee at inception (as the coupons are standardized).

A swaption wraps an optionality term around an IRS.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Derivatives

IRS 53g3 An IRS is an exchange of fixed and
floating coupons

Coupon 53g4 P1 P2 10,000,000 Coupon(Q,float,s,e,d,h) Assumed entered into at zero value
(ie, no cash at inception)

Coupon 53g5 P1 P2 (10,000,000) Coupon(Q,fix,s,e,d,h)

CDS Single
Name

gy4j

Security gy4j P1 P2 5,000,000 hx72 Underlying security defined above

Coupon gy4j P1 P2 5,000,000 Coupon(rate,s,e,d,h) Either 100 or 500bp

Coupon gy4j P1 P2 67,435 USD,s Calculated at inception

Swaption hw34

Option hw34 P1 P2 10,000,000 Strike(float) Where strike refers to the floating
rate in the IRS below

Coupon hw34 P1 P2 10,000,000 Coupon(Q,float,s,e,d,h)

Coupon hw34 P1 P2 (10,000,000) Coupon(Q,fix,s,e,d,h)

ISDA Common Domain Model Version 1.0: Design Definition Document

24

Index Derivatives Contracts

The example above shows the definition of an index and a trade in that index in the same format.

The index is defined in terms of quantities of previously defined bonds (eg, hx72 above). The
creation of the index has an identifier (ued6).

Once the index has been created, there is no difference between transactions in an index (ued6) to a
transaction in any other ‘thing’ already defined.

Notes:

•	 The fundamental function is the ability to store collections of things.

•	 An index is merely a collection of things. It is usually defined by a single entity (eg, FTSE
(SE100), Dow (DJIA), IHS Markit (iTraxx), etc) and is referenced and used by multiple
participants for different purposes.

•	 The underlying mechanism that is important is the ability to create an index identifier and then
add/modify the elements of an index independently.

•	 This same mechanism can be used to create other collections:

ºº A basket trade is a non-standard index;

ºº A structured derivative/note is a collection;

ºº More subtly, a trading book is a collection that changes every day;

ºº Indeed, a private client portfolio is also a collection that changes every day.

•	 The general point is picked up in the fractal-symmetry design section. All elements/instruments
of the financial markets are collections of simpler terms.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Derivatives An index is defined as a
standardized collection

Index
Definition

ued6 Define an index in terms of
previously defined bonds

Constituent 1 ued6 P5 O1 hx72 The bond defined above

Constituent 2 ued6 P43 O2 j9rs Another bond

etc. ued6

Constituent n ued6 P34 On 7eds Another bond

Execute a trade
in an INDEX

Security t6c8 P1 P2 5,000,000 ued6 Refer to the index defined above

Coupon t6c8 P1 P2 5,000,000 Coupn(Q,fix,s,e,d,h)

Cash t6c8 P1 P2 67,435 USD,s

ISDA Common Domain Model Version 1.0: Design Definition Document

25

Sophisticated Derivatives

More complex derivatives are hierarchies of simple derivatives – ie, they are collections of simpler
derivatives. Their lifecycle is to change from more complex derivatives into simpler derivatives as
time progresses. This suggests an elegant way of defining the contracts to simplify their lifecycle.

This example shows a knock-in FX option (KIFXO). A KIFXO is an FX option that comes into
existence if a certain condition is met. It is a compound option.

Starting from the inside or underlying and working out:

•	 There is an underlying FX trade.

•	 There is an option on that FX trade.

•	 The option only exists if a certain condition exists.

If defined this way, then the lifecycle events consist merely of deleting certain contract terms if the
conditions are met:

•	 If the knock-in (KI) conditions are met, then the KI conditions disappear (strike through) and
the FXO remains.

•	 If the FX options (FXO) conditions are met, then the FXO conditions disappear and a simple
FX trade is left.

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Comments

Knock In Option
Lifecycle

Execute Trade

Knock In y76j P1 P2 Q f1(rate) A knock in (if rate=KI in the period)

Option y76j P1 P2 Q f2(rate) The strike of option (if rate = S in
the period)

FX Trade y76j P1 P2 Q1 USD The underlying FX

FX Trade y76j P1 P2 Q2 GBP

Trade Knocks In

Knock IN y76j P1 P2 Q f1(rate) The knock In is exercised

Option y76j P1 P2 Q f2(rate) The underlying option is now active

FX Trade y76j P1 P2 Q1 USD

FX Trade y76j P1 P2 Q2 GBP

Trade Knocks In

Knock In y76j P1 P2 Q f1(rate)

Option y76j P1 P2 Q f2(rate) The underlying option is excercised

FX Trade y76j P1 P2 Q1 USD Underlying option FX is now active

FX Trade y76j P1 P2 Q2 GBP

ISDA Common Domain Model Version 1.0: Design Definition Document

26

Defining contracts in this way simplifies lifecycle processing25. It should allow an option to be
defined on any underlying and all exercise events to be processed the same way, removing terms/
conditionality as each of the conditions are met.

Portfolio Processes

Up to now, this paper has discussed events and individual transactions. This section looks at the
portfolios that result from transactions and the processes that run on them, starting with collateral.

Other portfolio processes (for the purpose of finance, capital, risk, etc) are similar to the collateral
process – for those purposes, they just need different aggregations/calculations (different functions –
ie, implementable as smart contracts).

Portfolio processes exploit the lineage property inherent in DLs (O(n) = f(O(<n)) explored above in
this paper.

Collateral Process

The collateral process runs in three steps:

•	 Step 1: Determine portfolio of OTC derivatives with the client and the collateral currently
posted by this client. This is the state of the ledger at a point in time that a party wishes to make
collateral call26.

25 ��Note: Compare this to some implementations where the different states in the trade lifecycle are processed in different systems with different data
formats and complex event processing between the systems

26 ��Operationally, this normally happens daily at the end of day, but it doesn’t need to be. In a DL environment, there doesn’t need to be a physical
snapshot of the positions and this could certainly be done at a higher frequency

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Va
lu

e

A
gr

eg
at

e

C
ol

la
te

ra
l

C
al

l

Va
lu

e

C
al

l

Va
lu

e
P

os
t

C
al

l

A
gr

eg
at

e

C
ol

la
te

ra
l

C
al

l

Open Positions

Derivative
Positions

OTC fed6 P1 P4 Q1 IRS (1,453) (1,453)

OTC 5r7x P1 P4 Q2 IRS 342 342

Market Hedges (1,111) (1,111)

Security fy43 P1 P57 Q3 Bond

Cash 8re6 P1 P34 Q4 Future

Collateral Held

Security 4df6 P1 P4 Q5 Bond 834 834 64 898

Cash l41g P1 P4 Q6 USD 233 233 (20) 213

1,067 1,111

Collateral Call (44) 0

ISDA Common Domain Model Version 1.0: Design Definition Document

27

•	 Step 2: Determine credit exposure by valuing the OTC derivatives and the collateral. There may
be several calculations:

ºº 2.1: Determine the variation margin (VM) required (usually net of consistent valuations);

ºº 2.2: Determine the initial margin (IM) required – potentially a more complicated calculation
based on an estimate of time to close-out the exposure in event of default by a party (eg, the
margin period of risk);

ºº 2.3: Collateral optimization – look at VM and IM, and determine which assets to pledge or
call.

•	 Step 3: Move and record collateral (cash, securities or other asset type move on a settlement27).

It could be efficient, if allowable, to net collateral movements with cashflow movements related to
the same derivatives portfolio – in other words, move collateral and coupons on the same date to
eliminate timing risk and (potentially) reduce the amount of margin required.

Finance Process

A finance process28 takes the accumulated direct observations on the state of the world and presents
them in a different format.

27 ��As discussed previously, there is no logical difference between cash and securities settlement processes, and both can be on DL
28 ��Finance processes are really just book-keeping processes

E
ve

nt

Id
en

ti
fi

er

P
ar

ty

P
ar

ty

Q
ua

nt
it

y

E
co

no
m

ic
s

Va
lu

e

A
gr

eg
at

e

Tr
ad

in
g

B
al

an
ce

sh

ee
t

P
ro

fi
t

&

Lo
ss

LE
X

R
W

A

C
A

P
IT

A
L

S
A

C
C

R

FI
N

A
N

C
IA

L
A

C
C

O
U

N
TS

Open Positions

Derivative
Positions

OTC fed6 P1 P4 Q1 IRS (1,453)

OTC 5r7x P1 P4 Q2 IRS 342

Market Hedges (1,111)

Security fy43 P1 P57 Q3 Bond 543

Cash 8re6 P1 P34 Q4 Future 345

Collateral Held 888

Security 4df6 P1 P4 Q5 Bond

Cash l41g P1 P4 Q6 USD

Retained
Earnings

(223)

ISDA Common Domain Model Version 1.0: Design Definition Document

28

The example shows a trading balance sheet for the same example as the collateral process above.
The derivatives positions are combined with market hedges to produce a retained earnings/net
assets number. All other finance and risk processes are of this type (profit and loss is the change in
retained earnings). This offers the opportunity to run a consistent set of books and records for all
numbers that are generated and recorded by the organization29. The outputs can then be recorded at
summary level in a general ledger30.

The logical end state if underlying transactions are all recorded on a DL is that all disclosures
are smart contracts on the ledger (ie, one per country). The smart contracts are written by the
accountants. There is minimal auditing31 due to the lineage and distribution characteristics of the
ledger.

Evidencing Professional Judgement

In general, senior management sets policies and wants to have evidence that the policies they have
put in place have been applied32. In this process, evidence of professional judgement is collected by
recording what an appropriate person has done what they have been professionally employed to do.
This is an important requirement in any business. This evidence is used in control reviews (ie, to
determine whether the results make sense).

Such policies can also be set up as smart contracts within a DL:

•	 Review all trades over X notional or Y inception value;

•	 Review all portfolios over X;

•	 Review all assets with a credit rating less than A- every three months and check;

•	 Risk limits are also examples of policies.

29 ��Fundamentally, what standards such as BCBS 239 require
30 ��That is if a general ledger is really still required with the advent of these new technologies. However, general ledgers are likely to continue to be

required for a while, as the concept is embedded in much legislation
31 ��Financial accounts require judgements to be made. Auditors should primarily be focused on independently assessing the reasonableness of these

adjustments. DLs provide a means of recording and evidencing professional judgement, be it the management or the auditor
32 ��BCBS 239

ISDA Common Domain Model Version 1.0: Design Definition Document

29

THE COMPLETE MODEL

This section classifies DLs and brings together the event, product, portfolio and CDM concepts
discussed so far.

Classes of Distributed Ledger

Basic Distributed Ledger

𝑁1(𝑓𝐷,[𝑂]) ≡ 𝑁2(𝑓𝐷,[𝑂]) ≡ ..≡𝑁𝑛(𝑓𝐷,[𝑂]) (𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

Where:

•	 𝑁𝑥 is a node on the DL.

ºº Each node is an independently running peer ‘copy’ of all other nodes on the ledger33;

ºº All nodes are identical;

ºº Anyone can set up and run a node.

•	 𝑓𝐷 are a simple set of pre-defined functions (ie, smart contracts) distributed to all nodes on the
ledger.

•	 [𝑂] is the set of observations that constitute the ledger.

ºº All nodes on the ledger contain the same set of observations [𝑂].

•	 This defines a non-permissioned DL (eg, common cryptocurrencies).

ºº Fundamentally, such a cryptocurrency runs on a few functions 𝑓𝐷.

ºº Create (x units at P7 as a result of completing a mining transaction);

ºº Transfer (x units from P1 to P2 where P1 and P2 are key addresses);

ºº Split (take x units from P1 and split to P2, P3);

ºº Aggregate (take units at address P4,P5 and combine on address P6).

ºº The non-permissioned distribution of [𝑂] and the ability of anyone to set up a node makes
this type of DL unsuitable for regulated financial business.

Relating this to the ISDA CDM:

•	 Fundamentally, the independent events are just functions 𝑓𝐷.

33 Note: The mechanics of how this is done is not relevant to this discussion

ISDA Common Domain Model Version 1.0: Design Definition Document

30

Extendable Distributed Ledger – Lineage

𝑁1(𝑓𝐷+𝑈,[𝑂]) ≡ 𝑁2(𝑓𝐷+𝑈,[𝑂]) ≡ ..≡𝑁𝑛(𝑓𝐷+𝑈,[𝑂]) (𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

𝑤ℎ𝑒𝑟𝑒 [𝑂𝑥,𝑚] = 𝑓𝑈([𝑜1,<𝑚],[𝑜2,<𝑚],…) (𝐿𝑖𝑛𝑒𝑎𝑔𝑒)

Where:

•	 𝑓𝑈 are user-definable functions (ie, smart contracts) that can be added to the DL.

•	 [𝑜1] [𝑜2] are observation sets on the ledger.

•	 [𝑂𝑥,𝑚] is a derived observation computed from other observations on the ledger by applying the
function 𝑓𝑈.

•	 This lineage property is a formal programing paradigm:

ºº Namely, that a function can only be defined in terms of previously defined functions or direct
observations of the real world;

ºº It is a formal object oriented (‘OO’) paradigm34;

ºº It incorporates an application programing interface (API) definition35.

•	 The location of ‘derived’ observations on a DL is defined by the combination of the location of
the existing lower-level observations and the location of the function code executed to derive
subsequent observations. The lineage property therefore defines a non-colliding extensible
address space on the ledger36.

Lineage is the key enabler of value in DLs:

•	 It allows the elimination of multiple systems and processes (ie, with no need to have routines
to extract, filter, transform, transmit, load, transform, filter, load, and the subsequent associated
reconciliations).

•	 It eliminates batch processing:

ºº Consider the classic finance/risk end-of-day process.

ºº End-of-day valuations consist of the tuple valuation [open positions, market data, valuation
function].

34 ��The objects are defined from the bottom up, as in a formal paradigm. In general, OO systems fail because they do not start from the fundamental
building blocks and build so inheritance works. Each OO system builder defines a local OO model (that is different to the OO model defined by any
other team solving the same problem). In practice, it is very rare for different teams to be solving exactly the same problem. Therefore, each of their
models are inconsistent. This fundamental inconsistency is then hidden behind a set of messaging APIs. The cost of the messaging and API is
therefore baked in

35 ��APIs invoke a function and pass parameters by value or by reference. This is the lineage definition. APIs are problematic where the underlying data
set is potentially different (ie, a by reference call). For example, if we ask an API to value the portfolio of trades [S], then the API doesn’t know what the
portfolio is, so the results cannot be relied upon

36 ��Compare this to the difficulty of defining a top down canonical relational model across multiple systems

ISDA Common Domain Model Version 1.0: Design Definition Document

31

ºº All of these could be persisted on the ledger.

ºº Open positions: the state of the ledger (strictly, the last transaction to be included).

ºº Market data: is a set of observations (and functions37) that is marked as the end of day set.

ºº Valuation function: is the code run (from simple price*quantity via discounted cashflows
through to the most complicated option pricing model).

ºº Tracking changes in the process of valuation – ie, valuation(open positions, market data,
valuation function, time) – is the holy grail of risk/finance management and control, and is
implicit on a well-implemented distributed ledger.

ºº For example, the function change(open positions, today, yesterday) is the portfolio change, the
function valuation(change(open positions, today, yesterday)) is then ‘new deal’ profit and loss.

ºº ‘Carry’ and ‘market move’ can be similarly defined.

ºº Risk sensitivities are then computed similarly as changes in valuation, but as a function of
change in market data (eg, PV01, etc) rather than just time.

ºº There is an opportunity to deal with timing problems without embedding bi-temporality
everywhere.

ºº For example, if there is a late booked trade (ie, one entered into a ledger after the time of an
end-of-day report38), then it can be effected by overlaying the changes onto the end-of-day
report to compute the impact. A good implementation removes the need for any manual
corrections/adjustments.

ºº There is no need to complicate every trade/position record by making them manage timing
problems. Catch the small/tiny population of offending trades and overlay into the correct
period.

•	 It eliminates product taxonomies:

ºº The definition of a product is from the market data required to value it, rather than a complex
mapping of the elements of the contract terms to a taxonomy.

ºº This approach is future proof and generic.

ºº This approach also has applications for finance processes (eg, mark to market (liquid/
observable price), mark to model (liquid/observable inputs) and mark to model (unobservable
process). Namely, this classification is a function of market data, rather than the contract.
Observability changes over time.

37 ��For example, a yield curve is an observation set and a set of interpolation calculations
38 ��It should be noted that any migration to a DL is likely to reduce the instances of late-booked trades

ISDA Common Domain Model Version 1.0: Design Definition Document

32

•	 It allows back-testing in a live environment:

ºº To assess the impact of a new calculation/function 𝑓𝑁𝑒𝑤 in comparison to an existing
𝑓𝐶𝑢𝑟𝑟𝑒𝑛𝑡, the function is put into the ledger with a request that it computes using the same
data on the ledger.

ºº It can compute as fast as resources allow.

ºº The results will not collide, as the location of the results are defined by 𝑓𝑁𝑒𝑤.

ºº However, the results of 𝑓𝑁𝑒𝑤 and 𝑓𝐶𝑢𝑟𝑟𝑒𝑛𝑡 can be compared, as all shared elements of the
ledger location are the exactly the same.

ºº Compare this to the complexity of testing new functions across existing infrastructure (eg,
running parallel testing environments, ‘fudging clocks’, feeding reconciliation processes, etc.
Indeed, back-testing is rarely done. Instead, parallel testing, which takes a lot of time, is the
norm.

•	 It is the basis of a solution for BCBS 239:

ºº It provides lineage from board/management information packs all the way to the transactions.

•	 See fractal symmetry picture for an illustration of lineage.

Mapping to the ISDA CDM:

•	 Dependent events and product definitions map to 𝑓𝑈.

•	 All dependent events are lineage examples.

•	 All product definitions are then derived observations.

ºº Namely, there is conceptually a product template provided (a derived observation because it is
made up of lower observations (eg, an IRS is two coupons)).

ºº When a transaction is executed, the product template (an observation on the ledger) is
populated with economics (ie, direct observations). A transaction is then created that
combines the location of the template with the set of direct observations (the economics) to
produce a derived observation, which is the transaction.

•	 All portfolio processes are likewise derived observations upon transactions.

ISDA Common Domain Model Version 1.0: Design Definition Document

33

Permissioned Distributed Ledger

𝑁𝑃1(𝑓,[𝑂𝑃1]) ≡ 𝑁𝑃 2(𝑓,[𝑂𝑃 2]) ≡ 𝑁𝑃 3(𝑓,[𝑂𝑃 3])..≡⋯ ≡𝑁𝑃 1,𝑃 2(𝑓,[𝑂𝑃 1,𝑃 2])

Where:

•	 𝑃1,𝑃2,𝑃3,…,𝑃𝑛 are controlled parties on the ledger.

•	 𝑁𝑃1 is a permissioned node that only holds observations that 𝑃1 is a party to [𝑂𝑃1].

•	 𝑁𝑃1𝑃 2 is a node that 𝑃1 and 𝑃2 have given permission to hold their transactions (a ‘regulatory
node’).

•	 The same mechanics holds true for functions 𝑓.

•	 If 𝑃1 is further subdivided, then it provides the mechanism for more granular permissions (eg, to
specific trading books or branches).

Mapping to the ISDA CDM:

•	 No changes to the model to add such a feature.

•	 Permissioning provides information security.

•	 Functions 𝑓 could be permissioned in this way also.

ºº From the ISDA CDM event, product and process functions would probably be distributed
across all ledger participants.

ºº Proprietary functions (eg, valuation models) would be restricted to individual participants.

Distribution to Computational Nodes

𝑁𝑃1(𝑓,[𝑂𝑃1]) ≡{𝑛𝑃1(𝑓,[𝑜1])+𝑛𝑃1(𝑓,[𝑜2])..≡⋯ ≡𝑛𝑃1(𝑓,[𝑜𝑚])}

𝑤ℎ𝑒𝑟𝑒 [𝑂𝑃1]= [𝑜1]+ [𝑜2]+ ..+ [𝑜𝑚]

Where:

•	 𝑛() is a sub node – ie, a node that contains a subset of 𝑁().

•	 Re-use of the permissioning process from a permissioned DL.

ºº In a permissioned ledger, the observations and code are distributed to nodes based on party
IDs (ie, contents of the ledger).

ISDA Common Domain Model Version 1.0: Design Definition Document

34

ºº In a distribution to computation nodes, the observations and functions are distributed:

ºº Either on a numerical basis;

ºº Or based on the contents:

•	 All observations of this type (product) to a sub node:

•	 All observations and functions that use this market data.

ºº Combination of the above.

•	 The objective is to distribute across physical processing cores using the same distribution
mechanism used across the ledger itself for other purposes.

Mapping to ISDA CDM:

•	 None.

•	 But emphasizes the worth of parametric processing (ie, minimize the transactions).

Fractal Symmetry

Fractal symmetry is the implication of the lineage property of DLs defined above.

[𝑂𝑥,𝑚] = 𝑓𝑈([𝑜1,<𝑚],[𝑜2,<𝑚],…) (𝐿𝑖𝑛𝑒𝑎𝑔𝑒)

Fractal Symmetry – Picture Example

“FRACTAL SYMMETRY”
Repeating structure at different scales

1. Product, Transaction and Portfolio processing
 are logically the same

2. Increasing number of levels facilitates wider coverage

3. Careful design means SAME code can be used for
 historically different processes

4. The world is one big hierarchy in time and space

“Portfolio Processing”
“Portfolio” is “valued”

“Transaction” Processing
Scalar Operations on Defined
Products to build up “Positions”

Hierarchical “Product Definition”
Terms are grouped

Code:-Coupons, Dates, Valuation, etc.

{Q,R ..} Numbers
{(R), ..} Pointers
{S,E, ..} Dates
{Text}

Portfolio” Building“
Positions” are collected together
Logically same as
building a product

ISDA Common Domain Model Version 1.0: Design Definition Document

35

Starting in the bottom left corner:

•	 A hierarchical product definition builds a product from simpler defined elements:

ºº Elements are defined (date, numbers, etc);

ºº Functions are built up from pre-defined elements;

ºº Products are built up of predefined functions;

ºº ‘Elements’, ‘functions’ and ‘products’ is a hierarchy where ‘elements’, ‘functions’ and ‘products’
are labels for the different levels in the lineage equation, O(n)=f(O(<n)). The actual name is
irrelevant;

ºº This produces a product template that can then be used repeatedly:

ºº An IRS (as defined previously);

ºº A bond, CDS, index, and so on, as defined previously.

•	 Transaction processing:

ºº Picks up previously defined templates and executes transactions in them.

ºº There are two types:

ºº Transactions in identical/fungible products (eg, bonds, equities, listed derivatives and
standardized derivatives (eg, CDS)). The transactions are aggregated together to produce a
single element in a portfolio.

ºº Transactions in unique/non-fungible products (eg, IRS trades) cannot be simply
aggregated, and therefore each transaction is an element in the resulting portfolio.

•	 Portfolio building:

ºº A portfolio is built up of transactions in fungible and non-fungible products;

ºº A portfolio consists of a collection number of elements;

ºº Portfolio building is logically the same as building a product – ie, it is the same lineage
equation O(n)=f(O(<n)) at a different scale;

ºº Conceptually, treat a trading portfolio as a single complicated/structured and changing
trade;

ºº Fractal symmetry is the same logical process at different scales.

ISDA Common Domain Model Version 1.0: Design Definition Document

36

•	 Portfolio processing:

ºº Evaluates a portfolio at a given time.

ºº Examples include:

ºº Net cashflow calculation – all positions in the portfolio are evaluated for cashflows today
(eval(value, today)). All resulting cashflows are added together to produce a net number.

ºº Valuation – all positions in the portfolio are valued as at today (eval(value, today)). All
resulting values are added together to produce a net number.

ºº Portfolio processes are also fractal – ie, the only change between the ‘cashflow’ and valuation’
example above is the parameter ‘cash’ and ‘value’.

Implemented well, fractal symmetry minimizes and parameterizes the functions within a common
framework. This reduces the amount of code that needs to be written and provides flexibility (eg,
adding new products and valuation methods).

The illustration above has unified this into the same framework:

•	 Product definition and portfolio processes;

•	 Portfolio cashflow generation and portfolio valuation.

ISDA Common Domain Model Version 1.0: Design Definition Document

37

Fractal Symmetry – Product Example

Further levels - Legal entities, etc.

Aggregate (Level 6)

	 Net value	 25,365

Aggregate (Level 5)
	 Valued Portfolio (Portfolio, Market Data, Model)

	 IRS Executed	 54,363

	 IRS Executed	 4,545

	 IRS Executed	 (33,543)

Aggregate (Level 4)
	 Portfolio

	 IRS Executed

	 IRS Executed

	 IRS Executed

Aggregate (Level 3) - Trade is executed - Template is populated
	 IRS Executed (dr54)

	 Coupon(USD,100M,3M,20170824,20270824,1.7653,A/360,NY,MF)

	 Coupon(USD,(100M),3M,20170824,20270824,LIBOR,A/360,NY,MF)

Aggregate (Level 2) - Constructed out of Level 1 Elements
	 IRS “Template”

	 Coupon(CCY,Quantity,Frequency,Start,End,Fixed,DayCount,Holidays,Convention)

	 Coupon(CCY,(Quantity),Frequency,Start,End,Float,DayCount,Holidays,Convention)

Aggregate (Level 1) - constructed out of BASE elements
	 Coupon(CCY,Quantity,FrequencyStart,End,Rate,DayCount,Holidays,Convention)

BASIC ELEMENTS (Level 0)
	 DayCount[“A/360”,”A/365”,”30/360”, etc.)

	 Convention[“ModFollowing”, etc.]

	 Dates[]

	 Holdays[cities:Dates]

	 CCY[“USD”,”GBP”, etc.]

	 Rate[Fixed, (Float)]

ABOUT ISDA
Since 1985, ISDA has worked to
make the global derivatives markets
safer and more efficient.

Today, ISDA has over 875 member
institutions from 68 countries. These
members comprise a broad range
of derivatives market participants,
including corporations, investment

managers, government and
supranational entities, insurance
companies, energy and commodities
firms, and international and regional
banks. In addition to market
participants, members also include key
components of the derivatives market
infrastructure, such as exchanges,
intermediaries, clearing houses and

repositories, as well as law firms,
accounting firms and other service
providers. Information about ISDA
and its activities is available on the
Association’s website: www.isda.org.

ISDA® is a registered trademark of the
International Swaps and Derivatives
Association, Inc.

Copyright © 2017 by International Swaps and Derivatives Association, Inc.

