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ISDA SIMMTM,1: From Principles to Model Specification 

Counting Down to the Effective Date of the Rules 
 

 

A. Introduction 
The dawn of 2016 brings closer an important date for the non-centrally cleared OTC derivatives 
market, September 1st, the day when compliance with the margin requirement rules across 
jurisdictions will be required for the first time. The need to comply with these rules has triggered 
a holistic re-design of the collateral management, risk management, legal and reporting processes 
and systems within industry and is re-defining the modus operandi in this space. The global 
nature of the market, the degree of transformation that is required, the delay in the publication 
of the jurisdictional final rules and the compressed implementation timelines have all contributed 
to the creation of a unique  Gordian knot that seeks a workable solution. 

This paper will focus solely on the initial margin model that is proposed by ISDA, the Standard 
Initial Margin Model or SIMM, providing the context and rationale for the SIMM model 
specification. Currently, industry is working to refine, test, approve and validate the SIMM so that 
it can be ready to use by the rules’ effective date. 

 

 

B. Background 
In December 2013, ISDA disclosed2 the commencement of an industry initiative to develop a 
standard initial margin model that would be compliant with the BCBS-IOSCO guidelines3 and 
could be used by participants as a minimum for calling each other for initial margin (IM). This 
decision followed the realization that the OTC uncleared derivatives market could not operate 
viably under a schedule-based margin regime and that the development of a standardized, 
model-based IM methodology was both attainable and valuable, if adopted widely by firms. 

A common methodology for IM quantification would have several key benefits, including the 
more efficient planning and management of firms’ liquidity needs from margin calls, the timely 
and transparent dispute resolution as well as the consistent regulatory governance and oversight. 
In particular, the efficient resolution of disputes would be a considerable challenge if each 
participant developed its own IM model. If this were to occur, every firm would be compelled to 
build and maintain all of the IM models used by its trading partners, so that it could ascertain the 
correctness of the margin calls it receives. The operational complexity in the co-existence of a 
multitude of models and the capture of the relevant datasets for their implementation would 
overwhelm the industry and threaten the accomplishment of the regulatory objectives. 

The first step in developing the SIMM methodically was to define the boundaries of the solution 

                                                           
1 Patent pending. This document is published by the International Swaps and Derivatives Association, Inc. (ISDA) and is 
protected by copyright and other proprietary intellectual property rights. It cannot be used, revised or distributed 
except solely for the purpose of a market participant’s own commercial transactions or as otherwise provided for by 
ISDA in a written licensing agreement. If you are a service provider wishing to license ISDA SIMMTM or other ISDA 
intellectual property, please contact isdalegal@isda.org. This notice may not be removed. 
2 ISDA, “ISDA Standard Initial Margin Model (SIMMTM) for Non-Cleared Derivatives”, Dec. 2013, Link to ISDA website  
3 BCBS 261, “Margin requirements for non-centrally cleared derivatives”, Sept.  2013, www.bis.org/publ/bcbs261.pdf  

http://www2.isda.org/attachment/NzQ5NA==/March%2026%20-%20SIMM%20for%20Non-Cleared%20Paper%20&%20Appendix.pdf
http://www.bis.org/publ/bcbs261.pdf
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universe through articulating clearly the model’s intended purpose, setting criteria for assessing 
candidate formulations and recognizing the modelling constraints imposed by the very nature of 
being a global and standardized IM model. 

 

 

Objectives 

The main objective stated in the final BCBS-IOSCO guidelines3 is the “reduction of systemic risk”. 
Consequently, IM models are clearly differentiated from capital models, whose general aim is to 
accurately reflect all reasonable types of risk a portfolio may have. In essence, the global 
regulators recognized that a fine balance needs to be struck between risk sensitivity and the 
enhanced operational requirements of a margin model. Margin constitutes only one line of 
defense when a counterpart defaults, complemented by additional ones if it proves to be 
insufficient, and therefore focus has been given to capturing the systemically important risks of 
portfolios on an ongoing basis (risks that are not captured by the SIMM today but become 
systemically important in the future will then be incorporated). 
In addition, the industry strongly believes that the value of the model is intrinsically linked to its 
market uptake and, as a result, its sophistication would need to be ‘right-sized’ to both comply 
with the regulatory requirements as well as be easy to understand and manage by market 
participants at large with varying levels of sophistication.  
 
 
Criteria 

ISDA identified the following key criteria to which an initial margin model aimed at satisfying the 
BCBS-IOSCO rules should adhere to.  

 Non-procyclicality - Margins are not subject to continuous change due to changes in market 
volatility; 

 Ease of replication - Easy to replicate calculations performed by a counterparty, given the 
same inputs and trade populations; 

 Transparency - Calculation can provide contribution of different components to enable 
effective dispute resolution; 

 Quick to calculate - Low analytical overhead to enable quick calculations and re-runs of 
calculations as needed by participants; 

 Extensible - Methodology is conducive to addition of new risk factors and/or products as 
required by the industry and regulators; 

 Predictability - IM demands need to be predictable to preserve consistency in pricing and to 
allow participants to allocate capital against trades; 

 Costs - Reasonable operational costs and burden on industry, participants, and regulators; 

 Governance - Recognizes appropriate roles and responsibilities between regulators and 
industry; 

 Margin appropriateness - Use with large portfolios does not result in vast overstatements of 
risk. Recognition of risk factor offsets within the same asset class. 

It is important to highlight that the SIMM is not a model that tries to optimize any particular 
dimension, instead finds a realistic and sustainable compromise between the criteria and the 
objectives that have been identified. 
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Modelling constraints 

As initial margin calculations may involve the application of hundreds of shocks to the instrument, 
a full price re-evaluation calculation could take hours or even a whole day. On the other hand, it is 
imperative that the SIMM approximates the response to shocks with a fast calculation for 
derivative price-making decisions. The most efficient way to approximate a derivative contract’s 
response to shocks is to pre-compute a sensitivity or “delta” of the derivative contract for each 
risk factor, and approximate the response by multiplying each sensitivity by the respective risk 
factor shock size. 
 
 
Overall, the SIMM must remain relatively simple to apply while addressing the most serious 
systemic risks and avoiding high implementation costs for market users, so that market 
penetration is maximized and the disruption to this vital hedging market is minimized. 
 
For additional details regarding the industry’s views on issues raised in the “Background” section, 
please refer to the relevant publicly available ISDA paper2. 
 
 
 

C. Selecting the Model Specification 
The ISDA WGMR Risk Classification & Methodology Workstream (ISDA RCM) was mandated to 
identify candidate IM models and then select the most suitable for SIMM. As a first step, the ISDA 
RCM investigated the merits and suitability of the existing banking capital models as well as the 
approaches used in the cleared derivatives field. 

 

Scanning the existing industry solutions 

In a capital model, one calculates the Expected Positive Exposure (EPE) to its counterparty in 
order to estimate the amount of credit risk capital to hold, given the counterparty’s probability of 
default (PD). Regulatory counterparty exposure models are designed to calculate the EPE of 
derivative contracts traded with the counterparty, the credit risk capital is then estimated via the 
EPE, the PD of the counterparty, and the loss-given-default. However, unlike the risk mitigation 
provided by IM, the credit risk capital model requirement is imposed on the surviving 
counterparty and, consequently, the capital calculations need not be reconciled. Hence, capital 
model outputs do not require the same level of standardization as IM (though regulators may 
think otherwise so as to promote uniform financial safety). The ISDA RCM had to look beyond the 
traditional capital models for SIMM. 

Looking at the cleared derivatives space and those IM models used by the major central 
counterparties (CCPs), we see that the co-existence of a number of models even within the same 
CCP’s product coverage. Historical VaR simulations, the Standard Portfolio Analysis of Risk (SPAN) 
margin system and standardized approaches are all examples used by CCPs side-by-side. It seems 
that the underlying product risk characteristics drive different solutions with no model prevailing 
across the board. This finding confirms the complexity of selecting a unique SIMM specification 
and suggests that there is no single solution or approach. 
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SIMM Specification 

A wide range of models was investigated, including factor-based parametric VaR models, 
historical simulation VaR models, use of risk grids/ladders and stable distribution methods. After 
a comprehensive evaluation of the model options, the ISDA RCM decided to base the SIMM on a 
variant of the Sensitivity Based Approach (SBA), an approach adopted by the BCBS for calculating 
capital requirements under the revised market risk framework; i.e. the Fundamental Review of 
the Trading Book (FRTB). SBA has been developed to be a more risk-sensitive yet conservative 
standard model for the market risk capital requirement quantification.  

Although, the SIMM specification is still being refined and tested by the industry, its overall 
design has a number of distinct advantages that make it fit for purpose. 

 

Non-procyclicality  

A margin model that is procyclical is effectively flawed since it amplifies contagion and systemic 
risks when the financial marketplace is the most vulnerable; during a period of stress and high 
volatility. Certain models, such as historical simulation, have this feature embedded in their 
design and remedying it, within the regulatory bounds, can be quite challenging. The SIMM 
avoids this complication altogether; procyclicality only stems from the regulatory requirement to 
automatically recalibrate the model with certain frequency.  

  

Data needs, costs and maintenance 

The data needs, costs, accessibility and maintenance were paramount factors in the choice of the 
margin model specification. The SIMM is relatively parsimonious in its data requirements; it uses 
a “tiered” approach which first computes capital for various “buckets” using a standard Variance-
Covariance formula, and then combines the bucket-level numbers using a modified Variance-
Covariance formula which recognizes hedging and diversification. This avoids the need for a large 
covariance matrix covering all the risk factors, and keeps the calculation modular (which is helpful 
in reconciliation).  

Furthermore, only the calibration agent (i.e. ISDA) needs to have access to certain historical 
timeseries for the SIMM parameter calibration (risk weights and correlations). The actual users do 
not need to have access to underlying raw data, avoiding the burden of any licensing costs. 
Having said that, the current SIMM calibration is mostly using data contributed from the ISDA 
member firms and hence avoids licensed data where possible. 

In contrast, historical simulation and other approaches, would lead to elevated data usage costs 
and the need for a central authority to maintain and manage the full historical timeseries for the 
whole industry.  

 

Transparency and Implementation costs 

The identification of the drivers that impact the SIMM margin quantum is straightforward, 
enhancing the model’s predictability and facilitating internal communication by the users for 
liquidity and business planning purposes. At the same time, the SIMM calculator is simple to 
implement and cost-effective. 

 

 



  SUBJECT TO SUBSTANTIVE CHANGE AND  
  MAY BE WITHDRAWN BY ISDA IN WHOLE OR IN PART  
   DRAFT DOCUMENT: Updated March 3, 2016 
   

Copyright © 2016 by International Swaps and Derivatives Association, Inc. 5 
 

 

Despite its attractive features, the SIMM is still an approximate model that encompasses 
numerous compromises and simplifications with a view of i) satisfying the tight operational 
requirements of a cross-border international IM model and ii) making sure that any risk factors 
included can be actually reconciled across industry. For example, the need to calculate margin 
before quoting the price of a new trade is an important consideration, since margin has a direct 
impact on pricing through its funding cost. It was therefore essential to be able to perform the 
computation quickly not just for the current incremental IM requirement, but the expected 
future IM requirement through the life of the trade.  

As a consequence, the SIMM has low granularity, simple assumptions in terms of distributions 
(Gaussian) and restricted risk coverage (e.g. dividend risk and interest rate skew are not 
captured). It is through backtesting and validation that assurance in the SIMM ability to cover the 
systemic risk of portfolios and adhere to the regulatory provisions is maintained. A standing ISDA 
committee (the ISDA SIMM Governance Committee) will review the results of the industry 
backtesting and approve any changes to the SIMM that are required to maintain regulatory 
compliance. 

 

For additional information on the underlying mathematics of the SIMM, please refer to the 
Appendices A and B. 

 

 

D. The Evolution of the SIMM throughout the regulatory process 
The SIMM is a model that has evolved over time since its first release to regulators in September 
2014. Industry testing, direct engagement with regulators and detailed requirements in the 
consultation papers and final rules released to-date in different jurisdictions have all contributed 
to shaping the SIMM. For example, the first version of the SIMM only captured the delta risk 
whereas jurisdictional rules subsequently specified that main non-linear dependencies should 
also be covered. 

Nonetheless, until the rules are finalized in all major jurisdictions and the relevant competent 
authorities have the opportunity to review the SIMM, we can still expect some changes to be 
made to the model. Hopefully, these will have limited impact on firms’ infrastructure builds and 
will not increase the pressure to meet the tight implementation timeline. 

Throughout 2015 ISDA has been proactive in keeping the global regulators up-to-date with 
developments on the SIMM. As part of this engagement, ISDA developed and delivered to 
regulators complete model documentation, backtesting results and an independent model 
validation report. 

ISDA remains committed to delivering a model that is compliant with the regulations at the major 
jurisdictions and is also looking ahead to the next phase, i.e. how the model will be governed 
after the effective date of September 1, 2016. Also, ISDA will support the industry as it faces 
implementation and compliance challenges in the coming years. 
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APPENDIX A: SIMM and the Nested VaR/CoVAR Formulas 

 

1. Introduction 

Both the FRTB Standardized Approach (Sensitivity Based Approach or SBA-C) and the ISDA SIMM 
use a sequence of nested variance/covariance formulas to calculate capital and margin. 

The general form is to have a number of buckets a, b, c, etc., and a number of nodes i = 1, …, n in 
each bucket.  There is a risk-weighted delta 𝑊𝑆𝑖

𝑎 for the delta to node i in bucket a. 

The formulas for calculating the margin are as follows: 

𝐾𝑎
2 =∑(𝑊𝑆𝑖

𝑎)2
𝑛

𝑖=1

+∑𝜌𝑖𝑗
𝑎 (𝑊𝑆𝑖

𝑎)(𝑊𝑆𝑗
𝑎)

𝑖≠𝑗

, 

And 

𝐼𝑀 = √∑𝐾𝑎
2

𝑎

+∑ 𝛾𝑎𝑏𝑆𝑎𝑆𝑏
𝑎≠𝑏

, 

 

Where 𝑆𝑎 is a signed version of 𝐾𝑎 which has different possible definitions 

𝑆𝑎 =

{
 
 

 
 min(𝑚𝑎𝑥 (−𝐾𝑎,∑𝑊𝑆𝑖

𝑎

𝑖

) ,𝐾𝑎) , 𝐼𝑆𝐷𝐴 𝑆𝐼𝑀𝑀

∑𝑊𝑆𝑖
𝑎

𝑖

, 𝐹𝑅𝑇𝐵 𝑆𝐵𝐴 − 𝐶

 

However neither of these approaches gives a detailed justification of the nested formulas 
approach, so it is hard to judge which of the alternative formulas for 𝑆𝑎 is more accurate. 

 

2. Nested formulas justification 

We can justify and motivate the nested formulas approach in the following way. 

Let us define the random variables 𝑌𝑖
𝑎 to be the random 10d evolution in the market rate 

corresponding to node i of bucket a. We assume that this has zero mean and unit variance, 
because the 10d scaling and 99% percentile have been put in the risk-weighted scaled delta. This 
lets us focus on the correlation structure.  

Within each bucket a, the correlation structure of the nodes is given by a matrix 𝑈𝑎where 

𝐶𝑜𝑣(𝑌𝑖
𝑎 , 𝑌𝑗

𝑎) = (𝑈𝑎)𝑖𝑗 = 𝜌𝑖𝑗
𝑎 . 

 

Let us denote the change in value of the portfolio due to changes in the market rate of node i of 
bucket a by 𝑋𝑎𝑖, where 

𝑋𝑎𝑖 = 𝑊𝑆𝑖
𝑎𝑌𝑖

𝑎. 

So that this change is driven by the random variable 𝑌𝑖
𝑎 which is the change in the relevant 

market rate. 

Then the distribution of the change in value of the portfolio due to changes in bucket a over all its 
nodes is given by the formula 
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𝑋𝑎 =∑𝑋𝑎𝑖

𝑛

𝑖=1

=∑𝑊𝑆𝑖
𝑎𝑌𝑖

𝑎

𝑛

𝑖=1

. 

 

The variance of this random variable is given by the formula 

𝑉𝑎𝑟(𝑋𝑎) = (𝑊𝑆
𝑎)⊤𝑈𝑎(𝑊𝑆

𝑎) = 𝐾𝑎
2. 

 

This shows, in line with our intuition, that 𝐾𝑎 has a specific interpretation as the amount of PV 
variation caused by bucket a overall. So the first formula in the nested sequence makes sense. 

The next nested formula is based on an idea of representing each overall bucket with an 
individual random variable. The random variable can be interpreted as the first principal 
component of changes in the bucket. For each bucket a, we have a random principal component 
𝑍𝑎, and we calibrate the covariance structure of these variables 𝑍𝑎 to have correlation 𝛾𝑎𝑏, 
where 

𝛾𝑎𝑏 = 𝐶𝑜𝑣(𝑍𝑎 , 𝑍𝑏). 

As before we have scaled the random variables to have unit variance. 

 

We can derive an explicit formula for 𝑍𝑎 as follows. Let us denote the maximum eigenvalue of the 
correlation matrix 𝑈𝑎  as 𝜆𝑎, with corresponding eigenvector 𝑧𝑎, with unit length (𝑧𝑎

⊤𝑧𝑎 = 1). 
Then 

𝑍𝑎 = 𝜆𝑎
−1/2

∑𝑧𝑎[𝑖]𝑌𝑖
𝑎

𝑛

𝑖=1

. 

This has unit variance because 𝑉𝑎𝑟(𝑍𝑎) = 𝜆𝑎
−1𝑧𝑎

⊤𝑈𝑎𝑧𝑎 = 1. 

 

To derive the nested formula, we regress the random variable 𝑋𝑎 against the bucket’s principal 
component 𝑍𝑎, to write it as a multiple of 𝑍𝑎 plus an independent term 𝜀𝑎. That is we write (with 
no approximation) 

𝑋𝑎 = 𝑆𝑎𝑍𝑎 + 𝜀𝑎 ,       where       𝑆𝑎 = 𝐶𝑜𝑣(𝑋𝑎 , 𝑍𝑎). 

 

We assume the correlation structure that the 𝜀𝑎 are independent of both each other and the 
principal components. 

The variance of 𝜀𝑎 is given by the formula 𝑉𝑎𝑟(𝜀𝑎) = 𝐾𝑎
2 − 𝑆𝑎

2. This will always be non-negative, 
because of the Cauchy-Schwarz inequality 

|𝑆𝑎| = |𝐶𝑜𝑣(𝑋𝑎 , 𝑍𝑎)| ≤ 𝑉𝑎𝑟(𝑋𝑎)
1 2⁄  𝑉𝑎𝑟(𝑍𝑎)

1 2⁄ = 𝐾𝑎. 

 

Then the total portfolio value change X will be given by 

𝑋 =∑𝑋𝑎
𝑎

=∑𝜀𝑎
𝑎

+∑𝑆𝑎𝑍𝑎
𝑎

. 

 

Its variance is the square of the total margin requirement and is equal to 
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𝐼𝑀2 = 𝑉𝑎𝑟(𝑋) =∑𝑉𝑎𝑟(𝜀𝑎)

𝑎

+∑𝑆𝑎
2

𝑎

+∑ 𝛾𝑎𝑏𝑆𝑎𝑆𝑏
𝑎≠𝑏

. 

 

We can substitute 𝑉𝑎𝑟(𝜀𝑎) = 𝐾𝑎
2 − 𝑆𝑎

2 into the above to get 

𝐼𝑀2 =∑𝐾𝑎
2

𝑎

+∑ 𝛾𝑎𝑏𝑆𝑎𝑆𝑏
𝑎≠𝑏

. 

This is the nested variance/covariance formula as required. 

 

3. Explicit formula for Sa 

We can now derive the actual explicit formula for 𝑆𝑎. The formulas used by both FRTB and SIMM 
are approximations to the true value. 

Recall from above that 𝑆𝑎 is the covariance between the risk vector 𝑋𝑎 and the bucket’s principal 
component 𝑍𝑎. The covariance can be written as 

𝑆𝑎 = 𝐶𝑜𝑣(𝑋𝑎 , 𝑍𝑎) = 𝐶𝑜𝑣 (∑𝑊𝑆𝑖
𝑎𝑌𝑖

𝑎

𝑛

𝑖=1

, 𝜆𝑎
−1 2⁄ ∑𝑧𝑎[𝑖]𝑌𝑖

𝑎

𝑛

𝑖=1

) 

= 𝜆𝑎
−1 2⁄ (𝑊𝑆𝑎)⊤𝑈𝑎𝑧𝑎 = 𝜆𝑎

1 2⁄ (𝑊𝑆𝑎)⊤𝑧𝑎. 

 

3.1 FRTB approximation 

The FRTB methodology makes the approximation 𝑆𝑎 = ∑𝑊𝑆𝑖
𝑎  . This is equivalent to the 

eigenvector 𝑧𝑎 being constant and its eigenvalue 𝜆𝑎 = √𝑛. This only happens if every correlation 
𝜌𝑖𝑗
𝑎  is exactly one. Otherwise this approximation is not exact. 

It also has the drawback that this approximation for  𝑆𝑎 can exceed 𝐾𝑎, which is impossible in 
reality. This could cause an erroneous over-estimation of the capital. 

 

3.2 SIMM approximation 

The SIMM methodology makes a different approximation: 

𝑆𝑎 = min(𝑚𝑎𝑥 (−𝐾𝑎,∑𝑊𝑆𝑖
𝑎

𝑖

) ,𝐾𝑎). 

This has the advantage that it cannot go outside the allowed bounds of ±𝐾𝑎, but it is still only an 
approximation. 

 

3.3 Testing the approximations 

We can test the approximations by calculating the true value of 𝑆𝑎 and also calculating the values 
of the FRTB approximation and the ISDA approximation. 

We did this for a 100 random samples of possible risk vectors for an interest-rate bucket. There 
are 10 nodes in the bucket (3m, 6m, 1y, 2y, 3y, 5y, 10y, 15y, 20y, 30y), and each node had a risk 
delta which was an independent normal random variable, with a standard deviation of USD 
1,000. 
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The scatter plot shows the 100 samples. For each sample, there are two markers: a blue dot for 
the FRTB approximation and a red cross for the ISDA approximation. The green line marks the 
actual value of 𝑆𝑎 calculated using the covariance formula. Values above the green line indicate 
an approximation which is too high, and values below the green line indicate an approximation 
which is too low. The x co-ordinate of the markers is the true value, and the y co-ordinate is the 
approximation. 

The graph shows that generally the ISDA approximation is closer to the actual value than the 
FRTB approximation. In many cases, near zero, the two approximations are the same. In 
numerical terms the ISDA approximation has an average error USD 350, but the FRTB 
approximation has an average error of USD 550. So the FRTB approximation is about 50% less 
accurate than the ISDA approximation. 

The ISDA approximation is preferred over the analytic formula because it is robust and easier to 
calculate and reconcile between firms. 

 

 4. Explicit large correlation matrix 

This interpretation also allows us to calculate the explicit large correlation matrix which is 
effectively being used to calculate SIMM. 

We can show the construction explicitly in the two basket case, where the baskets are called a 
and b. Let us diagonalise the correlation matrices 𝑈𝑎 and 𝑈𝑏 so that (in the case of a) 

𝑈𝑎 = 𝑃𝑎Λ𝑎𝑃𝑎
⊤, 

where 𝑃𝑎 is an orthogonal matrix of the eigenvectors of 𝑈𝑎 and Λ𝑎 is the diagonal matrix of 
eigenvalues. We have sorted the eigenvalues so that the first eigenvalue is the largest one 
(denoted 𝜆𝑎). We define a “square root” matrix 

𝑉𝑎 = 𝑃𝑎Λ𝑎
1 2⁄ , 
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so that 

𝑉𝑎𝑉𝑎
⊤ = 𝑈𝑎      and      𝑉𝑎

−1𝑈𝑎(𝑉𝑎
−1)⊤ = 𝐼. 

Then we can create the principal component random vectors 

𝑅𝑎 = 𝑉𝑎
−1𝑌𝑎. 

 

This is a normal random vector with zero mean and covariance matrix of 𝑉𝑎
−1𝑈𝑎(𝑉𝑎

−1)⊤ = 𝐼, 
which is the identity matrix. Our correlation structure is that the first element of 𝑅𝑎 and the first 
element of 𝑅𝑏 have correlation of 𝛾𝑎𝑏, but the other elements of the R-vectors are independent. 
This corresponds to the intuitive sense that the first principal components of different buckets 
are correlated, but there is no correlation between the secondary principal components. 

So the covariance matrix of the combined vector of both 𝑅𝑎 and 𝑅𝑏 is 

𝐶𝑜𝑣𝑎𝑟 (
𝑅𝑎
𝑅𝑏
) = (

𝐼 𝛾𝑎𝑏Δ11
𝛾𝑎𝑏Δ11 𝐼

), 

where Δ11 is the matrix which has all zero entries except for the top-left cell which is one. 

 

Since we can express the original Y-vectors in terms of the R-vectors, as 

(
𝑌𝑎

𝑌𝑏
) = (

𝑉𝑎 0
0 𝑉𝑏

)(
𝑅𝑎
𝑅𝑏
), 

 

so that the covariance of the Y-vectors is given by 

𝐶𝑜𝑣𝑎𝑟 (
𝑌𝑎

𝑌𝑏
) = (

𝑉𝑎 0
0 𝑉𝑏

)(
𝐼 𝛾𝑎𝑏Δ11

𝛾𝑎𝑏Δ11 𝐼
)(
𝑉𝑎
⊤ 0

0 𝑉𝑏
⊤) = (

𝑈𝑎 𝛾𝑎𝑏𝑉𝑎Δ11𝑉𝑏
⊤

𝛾𝑎𝑏𝑉𝑏Δ11𝑉𝑎
⊤ 𝑈𝑏

). 

 

If we define the scaled eigenvector 𝑦𝑎 = 𝜆𝑎
1 2⁄ 𝑧𝑎 , where 𝑧𝑎  is the unit-length eigenvector 

corresponding to the maximum eigenvalue 𝜆𝑎, then the covariance matrix can also be written as: 

𝐶𝑜𝑣𝑎𝑟 (
𝑌𝑎

𝑌𝑏
) = (

𝑈𝑎 𝛾𝑎𝑏𝑦𝑎𝑦𝑏
⊤

𝛾𝑎𝑏𝑦𝑏𝑦𝑎
⊤ 𝑈𝑏

). 

 

5. Numerical Example for GIRR 

We can see numerical values for these vector and matrix quantities in the case of the SIMM 
calibration for GIRR. Let us ignore tenor basis and just focus on the buckets (currency curves) and 
nodes (tenor points). 

The correlation matrix is a 10 x 10 matrix over the ten tenor points. 

 

The maximum eigenvalue is 7.243, and the scaled eigenvector (𝑦𝑎 = 𝜆𝑎
1 2⁄ 𝑧𝑎) has the values 

3m 6m 1y 2y 3y 5y 10y 15y 20y 30y 

0.474 0.68 0.833 0.915 0.948 0.967 0.936 0.906 0.885 0.844 

 

So the true 𝑆𝑎  is calculated by calculating the weighted sum of 𝑊𝑆𝑖
𝑎 , weighted by this 

eigenvector 𝑦𝑎. 
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Then the off-diagonal block matrix, let’s call it A, is 𝐴 = 𝑉𝑎Δ11𝑉𝑏
⊤ = 𝑦𝑎𝑦𝑏

⊤, has values 

 3m 6m 1y 2y 3y 5y 10y 15y 20y 30y 

3m 0.225 0.322 0.395 0.434 0.450 0.458 0.444 0.429 0.420 0.400 

6m 0.322 0.462 0.566 0.622 0.645 0.657 0.636 0.615 0.602 0.574 

1y 0.395 0.566 0.694 0.762 0.790 0.805 0.780 0.754 0.738 0.703 

2y 0.434 0.622 0.762 0.837 0.868 0.884 0.856 0.828 0.810 0.772 

3y 0.450 0.645 0.790 0.868 0.899 0.917 0.888 0.859 0.840 0.800 

5y 0.458 0.657 0.805 0.884 0.917 0.935 0.905 0.876 0.856 0.816 

10y 0.444 0.636 0.780 0.856 0.888 0.905 0.876 0.848 0.829 0.790 

15y 0.429 0.615 0.754 0.828 0.859 0.876 0.848 0.820 0.802 0.764 

20y 0.420 0.602 0.738 0.810 0.840 0.856 0.829 0.802 0.784 0.747 

30y 0.400 0.574 0.703 0.772 0.800 0.816 0.790 0.764 0.747 0.712 

 

So the covariance matrix of the two currency vectors together is (in block form) 

𝐶𝑜𝑣𝑎𝑟 = (
𝑈 𝛾𝑎𝑏𝐴
𝛾𝑎𝑏𝐴 𝑈

). 

Note that there is no subscript on the intra-bucket correlation U matrices, because they are the 
same for each currency. The value of 𝛾𝑎𝑏 is [27]% with the current calibration. 

 

Only in the very special case where the correlation matrix U has all entries equal to one, will the 
matrix A also have all entries equal to one. 

In all other cases, A has entries less than or equal to one, because the entries of 𝑦𝑎 are all 
bounded by one in modulus (see appendix for proof). 

 

Supplement – Proof that elements of scaled eigenvectors are smaller than 1 in magnitude 

Suppose the orthonormal eigenvectors of a correlation matrix U are 𝑧1, 𝑧2, … , 𝑧𝑛 with eigenvalues 
𝜆1, 𝜆2, … , 𝜆𝑛. Then the matrix U can be written as 

𝑈 =∑𝜆𝑖𝑧𝑖𝑧𝑖
⊤

𝑛

𝑖=1

. 

Since the diagonal entries of U all have the value one, then 

1 =∑𝜆𝑖𝑧𝑖
2[𝑘]

𝑛

𝑖=1

,    for each 𝑘 = 1,… , 𝑛. 

Define the scaled eigenvector  𝑦𝑖 = 𝜆𝑖
1 2⁄ 𝑧𝑖, then  

1 =∑𝑦𝑖
2[𝑘]

𝑛

𝑖=1

,    for each 𝑘 = 1,… , 𝑛. 

Thus we can deduce that each co-ordinate of each y-vector is bounded above in magnitude by 
one. 
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APPENDIX B: SIMM Curvature Formulas 

 

1. Introduction 

In previous versions of SIMM (prior to v3.4), the curvature margin was modeled using the similar 
methodology from FRTB.  
 

𝐾𝑏 = √max(0,∑max(𝐶𝑉𝑅𝑘 , 0)
2 +∑∑𝜌𝑘𝑙𝐶𝑉𝑅𝑘𝐶𝑉𝑅𝑙𝜓(𝐶𝑉𝑅𝑘 , 𝐶𝑉𝑅𝑙)

𝑙≠𝑘𝑘𝑘

) 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 = √max (0,∑𝐾𝑏
2

𝑏

+∑∑𝛾𝑏𝑐𝑆𝑏𝑆𝑐𝜓(𝑆𝑏 , 𝑆𝑐
𝑐≠𝑏𝑏

)) + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

 
During SIMM back testing of delta-neutral portfolios, and found that quite a few portfolios failed 
the back testing. Then a simple and straightforward proposal to use the same aggregation 
structure as Delta margin was tested 
 

𝐾 = √∑𝐶𝑉𝑅𝑘
2

𝑘

+∑∑𝜌𝑘𝑙𝐶𝑉𝑅𝑘𝐶𝑉𝑅𝑙
𝑙≠𝑘𝑘

 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 = √∑𝐾𝑏
2

𝑏

+∑∑𝛾𝑏𝑐𝑆𝑏𝑆𝑐
𝑐≠𝑏𝑏

+ 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

 
It also failed the back testing. The fundamental cause behind the failure is that the curvature term 
is essentially chi-squared in nature, but both FRTB and Delta approach are based on the normal 
distribution. 
 

For a portfolio with both linear and curvature risks, the 10-day (10 business days) PL can be 
written as 

𝑃𝐿 = 𝚫𝑇 ∙ 𝜹𝑿 + 
1

2
𝜹𝑿𝑇 ∙ 𝚪 ∙ 𝜹𝑿 

Where 𝚫 is a vector of all linear risks (Deltas),  𝚪 is a matrix of Gamma, and 𝜹𝑿 is a vector of 10-
day move of all market factors. Define the covariance matrix of 𝜹𝑿 as 𝚺. Using moment matching, 
the VaR can be written as the following form: 

𝑉𝑎𝑅 =
1

2
Tr(𝚪𝚺) + 𝑍𝐶𝐹√𝚫

𝑇𝚺𝚫+ 
𝟏

𝟐
Tr(𝚪𝚺)2, 

where 𝑍𝐶𝐹  can be estimated using Cornish-Fisher expansion, and the zero-order is 𝑍𝐶𝐹 =
Φ−1(99%) = 2.33. 
 
In ISDA SIMM model, the margin requirements from Delta and Curvatures are separately 
calculated and then added together. In order to calculate the curvature margin requirement, we 
consider a portfolio with zero delta risks. The curvature SIMM requirement is 



  SUBJECT TO SUBSTANTIVE CHANGE AND  
  MAY BE WITHDRAWN BY ISDA IN WHOLE OR IN PART  
   DRAFT DOCUMENT: Updated March 3, 2016 
   

Copyright © 2016 by International Swaps and Derivatives Association, Inc. 13 
 

𝑉𝑎𝑅 = 
1

2
Tr(𝚪𝚺) + 𝑍𝐶𝐹√

𝟏

𝟐
Tr(𝚪𝚺)2. 

 
If there is no cross Gamma, the above formula can be simplified as 
 

𝑉𝑎𝑅 =
1

2
∑Γ𝑘 (

𝑅𝑊𝑘

    Φ−1(99%)
)
2

+ 𝑍𝐶𝐹√
1

2
 ∑ρ𝑙𝑘

2Γ𝑙 (
𝑅𝑊𝑙

    Φ−1(99%)
)
2

Γ𝑘 (
𝑅𝑊𝑘

    Φ−1(99%)
)
2

 

Where 𝑅𝑊𝑘 are the risk weights which have been calibrated to the 99% percentile of historical 

10-day market movements. So 
𝑅𝑊𝑘

    Φ−1(99%)
 are the historical 10-day standard deviations. 

 

2. ISDA SIMM Curvature Formulas 

In SIMM, we calculate Gamma by using the Vega-Gamma relationship. This can be written as 

Γ𝑘 =
1

𝜎𝑘
2
∙
t days
365

∙ 𝜎𝑘
𝜕𝑉

𝜕𝜎𝑘
 

where 𝜎 is the implied volatility and 𝑡 is the expiry time of the option. The curvature risk 

exposures are defined as 

𝐶𝑉𝑅𝑘 =
1

2
Γ𝑘 (

𝑅𝑊𝑘

    Φ−1(99%)
)
2

=
1

2
 𝜎𝑘

𝜕𝑉

𝜕𝜎𝑘
 
14

t days
 

(

 
𝑅𝑊𝑘

    Φ−1(99%)𝜎𝑘√
14
365)

 

2

 

We realized that it is difficult for firms to get all implied volatilities for SIMM calculations, and we 

further assumed that the implied volatilities can be approximated from risk weights. The above 

formula can be simplified to 

𝐶𝑉𝑅𝑘 =
1

2
 𝜎𝑘

𝜕𝑉

𝜕𝜎𝑘
 
14

t days
 

 

Then for each bucket 𝑏 and risk factor 𝑘 with multiple tenors, we have 

𝐶𝑉𝑅𝑏,𝑘 = ∑∑𝑆𝐹(𝑡𝑘𝑗) ∙ 𝜎𝑘𝑗
𝜕𝑉𝑖
𝜕𝜎

𝑗𝑖 in 𝑏

, where 𝑆𝐹(𝑡) = 0.5min (1,
14 days

𝑡 days
). 

The sum is over all vol-tenor j. Using the definition of CVR, we can write the Curvature margin 

formula as 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 =  ∑𝐶𝑉𝑅𝑚
𝑚

+  𝜆√[∑𝐶𝑉𝑅𝑚
2

𝑚

+ ∑  𝜌𝑚𝑛
2 𝐶𝑉𝑅𝑚𝐶𝑉𝑅𝑛

𝑛≠𝑚

] 
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Where 𝜆 = √2𝑍𝐶𝐹.  The 𝜆 expression is an interpolation between two known edge cases. It is an 
approximation formula which will be close to or slightly more conservative than the actual values. 
Let us define 

𝛽 =
∑ 𝐶𝑉𝑅𝑏,𝑘𝑏,𝑘

∑ |𝐶𝑉𝑅𝑏,𝑘|𝑏,𝑘

 

 

We require 𝜆 as a function of 𝛽 with the following properties: 

1. Consider the single-bucket single-risk-factor case. If CVR1 = X > 0, then the PnL has a Chi-
square distribution, and the 99% percentile is approximately equal to Φ−1(0.995)2𝑋. So if 
𝛽 = 1, we want 𝜆 =  Φ−1(0.995)2 − 1. But if CVR1 = X < 0, equivalently 𝛽 = −1, then the 
curvature term is non-positive, so a conservative value for it is zero, which is given by 𝜆 =  1. 

2. In the more general case, of a portfolio in which each trade has negative Gamma (so 𝛽 =
−1), we also want the curvature margin to be zero. The condition 𝜆 =  1 is sufficient for this. 

3. For negative 𝛽, we choose to have 𝜆 as an increasing function which reaches its maximum 
when 𝛽 = 0. 

A simple form of such function can be piece-wise linear, as follows 

 
 

We define  

𝜃 = min(𝛽, 0) 

 

The above function of 𝜆 will be represented as the following formula 

𝜆 = (Φ−1(99.5%)2 − 1)(1 + 𝜃) − 𝜃 

Thus we obtain: 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 =  max(∑𝐶𝑉𝑅𝑏,𝑘
𝑏,𝑘

+ 𝜆√∑𝐶𝑉𝑅𝑏,𝑘
2

𝑏,𝑘

+ ∑ 𝑈𝑏𝑘,𝑐𝑙
2𝐶𝑉𝑅𝑏,𝑘𝐶𝑉𝑅𝑐,𝑙

(𝑏,𝑘)≠(𝑐,𝑙)

, 0), 

where the correlation term is 

𝑈𝑏𝑘,𝑐𝑙 : {
= 𝜌𝑘𝑙     for 𝑏 = 𝑐
≅ 𝛾𝑏𝑐    for 𝑏 ≠ 𝑐

 

 

For 𝑏 ≠ 𝑐, 𝛾𝑏𝑐 is an approximation of the real correlation term (see Appendix A for more details). 
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With this we can rewrite the equation as: 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 =  max(∑𝐶𝑉𝑅𝑏,𝑘
𝑏,𝑘

+ 𝜆√∑𝐶𝑉𝑅𝑏,𝑘
2

𝑏,𝑘

+ ∑ 𝜌𝑘𝑙
2 𝐶𝑉𝑅𝑏,𝑘𝐶𝑉𝑅𝑏,𝑙

𝑏,𝑘≠𝑙

+∑∑𝛾𝑏𝑐
2 𝐶𝑉𝑅𝑏,𝑘𝐶𝑉𝑅𝑐,𝑙

𝑘,𝑙𝑏≠𝑐

, 0), 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 =  max(∑𝐶𝑉𝑅𝑏,𝑘
𝑏,𝑘

+ 𝜆√∑𝐾𝑏
2

𝑏

+∑𝛾𝑏𝑐
2 (∑𝐶𝑉𝑅𝑏,𝑘

𝑘

)(∑𝐶𝑉𝑅𝑐,𝑙
𝑙

)

𝑏≠𝑐

, 0), 

where  

𝐾𝑏 = √∑𝐶𝑉𝑅𝑏,𝑘
2 +∑𝜌𝑘𝑙

2 𝐶𝑉𝑅𝑏,𝑘𝐶𝑉𝑅𝑏,𝑙
𝑘≠𝑙𝑘

 

is the curvature risk exposure aggregated for each bucket 𝑏. 

As 𝐾𝑏
2 + ∑ 𝛾𝑏𝑐

2 (∑ 𝐶𝑉𝑅𝑏,𝑘𝑘 )(∑ 𝐶𝑉𝑅𝑐,𝑙𝑙 )𝑏≠𝑐  can be negative in some cases, we set (as we usually 

do with SIMM in that case) 𝑆𝑏 = max(min(∑ 𝐶𝑉𝑅𝑏,𝑘𝑘 , 𝐾𝑏),−𝐾𝑏) for each bucket 𝑏 and finally 

obtain 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑟𝑔𝑖𝑛 ≅  max(∑𝐶𝑉𝑅𝑏,𝑘
𝑏,𝑘

+ 𝜆√∑𝐾𝑏
2

𝑏

+∑𝛾𝑏𝑐
2 𝑆𝑏𝑆𝑐

𝑏≠𝑐

, 0) . 

 

3. Numerical Tests 

We setup a set of testing portfolios, which have only curvature components. The PL can be 

simulated using 

𝑃𝐿 =∑CVR𝑖𝜖𝑖2
𝑁

𝑖=1

 

Where 𝜖𝑖 are correlated standard normal random variables. We further assume that 

 The correlations between all pairs are the same. 

 The sum of absolute CVRs of all dimensions is equal to 1. The SIMM margins for all testing 

portfolios are in the same order and so it is easy to compare. 

We set up different portfolios that 

 Number of dimensions are from 2 to 1024 

 Correlations are from -1 to 1 

 𝛽 are from -1 to 1 
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The VaR can be calculated more accurately using Monte Carlo simulation. In the tests, we have 

used 10,000 paths for each Monte Carlo simulation. The following graphs show the comparisons 

between Monte Carlo simulation and the margin formulas.  

 

 

We have compared 𝜆 with Monte Carlo simulated actual values (blue dots in the following graph) 
to the proposed simple formula. It demonstrates that the simple function of 𝜆 is almost always 
conservative (dots are below the red line). 

 
 

In addition to above Monte Carlo tests, we have tested SIMM formulas in a special case where an 
analytical test can be done. When there are n un-correlated underline market factors with the 
same positive gamma: 𝐶𝑉𝑅𝑖 = 𝑋 > 0, the actual 99% percentile can be calculated using the Chi-
Square table. The following graph shows the 99% percentile of the exact value from the Chi-
Square table, Delta-Approach, and current SIMM formulas. The x-axis is “n” –- the number of 
variables, and the y-axis is the 99% percentile. 



  SUBJECT TO SUBSTANTIVE CHANGE AND  
  MAY BE WITHDRAWN BY ISDA IN WHOLE OR IN PART  
   DRAFT DOCUMENT: Updated March 3, 2016 
   

Copyright © 2016 by International Swaps and Derivatives Association, Inc. 17 
 

 
 

From all above tests, we have demonstrated that SIMM formulas captured curvature risks pretty 
well, and are slightly more conservative. 

 
 


